電子回路講義案

池田 博一*

高エネルギー加速器研究機構 素粒子原子核研究所

平成13年6月26日 第1版 平成13年12月18日 補訂版

目 次

1	受動	受動回路						
	1.1	受動素子						
	1.2	キルヒホフ則						
	1.3	鳳・テブナンの定理						
	1.4	重ね合わせの理						
	1.5	相反定理						
2	能動	的回路						
	2.1	寅算増幅器						
		2.1.1 理想演算增幅器						
		2.1.2 演算増幅器の等価回路						
	2.2	帚還回路						
		2.2.1 演算増幅器による帰還回路の諸方式						
		2.2.2 負帰還の効果						
		2.2.3 負帰還回路の安定性 22						
	2.3	トランジスタ						
		2.3.1 BJT						
		2.3.2 BJT の組合回路						
		2.3.3 FET						
		2.3.4 MOSFET の組合回路 50						
3	信号	処理回路 53						
	3.1	言号発生源						
		3.1.1 放射線検出器						
		3.1.2 平行平板型の検出器						
		3.1.3 同軸円柱形の検出器						
	3.2	信号処理の方式						
		3.2.1 信号処理回路						
		3.2.2 信号対雑音比の改善						

*ikeda@post.kek.jp

1 受動回路

1.1 受動素子

一般に、電子回路は、能動素子と受動素子からなる。このうち、受動素子とは、外部から加えられ たエネルギー以上のエネルギーを発生することのない素子として定義される。電子回路に登場する受 動素子には、抵抗、容量及びコイルがある。これらは総て二端子素子であって、以下に示すような性 質を有する。

素子	素子方程式	根拠
抵抗	抵抗とは、印加した電流 (I) に比例する端 子電圧 (V) を発生する素子であって、比例 定数としての抵抗値 R は、 $R = \frac{V}{I}$ によっ て定義される。	キャリヤーの速度 (v) が電界 (E) に比例す るという性質、 $\mathbf{v} = \mu \mathbf{E}$ に抵抗素子の原理 を求めることができる。ここで μ は、易動 度 (mobility) といわれるものであって、通 堂定数として取扱うことができる
 容量	容量とは、印加した電流の積分に比例した 端子電圧を発生する素子であって、比例定 数としての容量は、 $C = \frac{1}{V} \int Idt$ によって 定義される。	Maxwell 方程式、 $rot\mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$ に容量素 子の原理を求めることができる。
コイル	コイルとは、印加した電流の時間微分に比例した端子電圧を発生する素子であって、 比例定数としてのインダクタンスは、 $L = V(dI/dt)^{-1}$ によって定義される。	Maxwell 方程式、 $rot\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ にインダクタンス素子の原理を求めることができる。

回路として動作させるためには、独立電源を付け加える必要があることは当然である。独立電源と は、制御電源に対する概念であって、回路網に生じた電圧又は電流による制御を受けることなく、回 路網に対して電圧又は電流を供給する電源をいう。

トランスの取扱いが問題となるが、トランスは、四端子素子ではあるが、交流的には、三つのコイ ルからなる T 型等価回路として扱えば足りる。

第一のポートの電圧・電流を *V*₁、*I*₁ とし、第二の ポートの電圧・電流を *V*₂、*I*₂ とすると、四端子回 路としてのトランスは、

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = i\omega \begin{pmatrix} L_1 & M \\ M & L_2 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

のように表すことができる。ここで、*i*ωは、微分 演算に対応して現われたものであって、上記関係式 は、すでに、周波数領域に移行したものであること に注意する必要がある。 従って、二次側を開放 $(I_2 = 0)$ したときの一次側のインピーダンスは $i\omega L_1$ であり、二次側を短絡 $(V_2 = 0)$ したときの一次側インピーダンスは、 $i\omega(L_1 - M^2/L_2)$ である。さらに、一次側を開放 $(I_1 = 0)$ したときの二次側のインピーダンスは $i\omega L_2$ であり、一次側を短絡 $(V_1 = 0)$ したときの二次側インピー ダンスは、 $i\omega(L_2 - M^2/L_1)$ である。

これから、トランスを表す四端子回路は、 $L_1 - M$ 、 $L_2 - M$ 、及び、Mのインダクタンスからなる T型等価回路の特性と一致するすることがわかる。一次側と二次側の巻き線方向が一致する場合には M > 0であり、不一致の場合には、M < 0とすればよい。

1.2 キルヒホフ則

キルヒホフ則	方程式	根拠
(電圧則)	各閉ループごとに $\sum_{k} v_{k} = 0$ を要求する。 v_{k} は閉ループに沿って配 置された回路素子での電圧降下(上昇) を表す。	$rot \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ において、磁束の時間変化がない場合に 相当する。磁束の変化の効果は回路素子 Lとして取込むことができる。
(電流則)	各ノード毎に $\sum_{k} i_{k} = 0$ を要求する。 i_{k} は、当該ノードに接続さ れた回路素子に流れる電流を表す。	$div\mathbf{j} + \frac{\partial \rho}{\partial t} = 0$ において、空間電荷の時間変化がない場合に相当する。空間電荷の変化の効果は回路素子 C として取込むことができる。

具体的な問題解決手法としては、ループ電流を変数にとる閉路方程式による方法、電位を変数とす る接点方程式による方法、さらに、素子ごとの電圧・電流に着目したタブロー法などがある。前二者 は小規模な回路で手計算が可能な範囲では実用的であるが、大規模な回路ではより組織的な計算手法 であるタブロー法が有効である¹。

1.3 鳳・テブナンの定理

ー以上の独立電源と、一以上の受動素子とからなる回路網は、当該回路網の一つのノードに着目す ると、そのノードを介しての外部に対する作用・効果に関する限り、高々一つの独立電源と、一つの インピーダンスで表すことができる。

当該一つの独立電源を電圧源とし、一つのインピーダンスを電源に対して直列に配置した回路を、 「テブナンの等価回路」という。一方、当該一つの独立電源を電流源とし、一つのインピーダンスを電 源に対して、並列に配置した回路を、「ノートンの等価回路」という。

¹タブロー法を用いた回路シミュレータについては、http://www.mos.t.u-tokyo.ac.jp/asada/home-j.html に公開されて いるものがあります。原則として、無償ですから、利用規約に従ってダウンロードして試してみて下さい。本格的に回路設計を行 う場合には、東京大学大規模集積システム設計教育センター (http://www.vdec.u-tokyo.ac.jp/) に利用申請をして HSPICE を用いるのが良いと思います。

テブナンの等価回路は、次のようにして求めることができる。

(1) 回路網の外部端子の電圧を、外部負荷を解除した状態で測定し、その電圧を発生する独立電源 をテブナンの等価回路の電源(V₀)とする。

(2)回路網中の、電圧源をすべて短絡し、かつ、電流源をすべて開放した状態で、当該外部端子から回路網のインピーダンスを測定したものををテブナンの等価回路のインピーダンス(Z₀)とする。 (3)ノートンの等価回路においては、電流源の電流を V₀/Z₀ とし、電流源に並列に Z₀ を配置すれ ばよい。

 $V \xrightarrow{R1}_{R2} \xrightarrow{ro=R1*R2/(R1+R2)}_{Vo=V*R2/(R1+R2)}$

左図には、電圧源 V の電圧を抵抗 R₁ と R₂ の直列 接続によって電圧分割する回路のテブナンの等価回 路を示してある。出力端子を開放したときの出力端 子での電圧は

$$V_o = \frac{R_2 V}{R_1 + R_2}$$

である また、電圧源を短絡したとき、出力端から 見込んだ抵抗は

$$r_{o} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

である。

である。

左図のノートンの等価回路は、テブナンの等価回路 と r_oの値を共有する。一方、電流源の値は

$$I_o = \frac{V_o}{r_o} = \frac{V}{R_1}$$

重ね合わせの理とは、回路方程式の線形性を根拠として、回路網中に複数の信号源がある場合において、各ノードの電圧、及び、各回路素子に流れる電流は、各信号源に独立に応答する量を足し合わせたものに等しいとするものである。

重ね合わせの理を用いてテブナンの定理を「証明」することができる。

(1)対象とする回路の出力端子は、外部回路をとりつけないとき、*V_{int}*の電圧を示し、内部電圧 源を短絡し、電流源を開放して、出力端子から抵抗を測定すると*R_{int}*であった。

(2) 外部抵抗 R_L と、この抵抗に直列接続した電圧 V_{int} を有する電池を用意する。

(3) この直列回路を、対象である回路網に接続すると(第一の構成)、*R_L*の値に依らずに電流は 流れないはずである。

(4) つぎに、内部電圧源を短絡し、電流源を開放して、外部には R_L と直列に電圧 V_{int} の電池に代えて 電圧 $-V_{int}$ を有する電池を取付ける(第二の構成)。この時 R_L の流れる電流は $V_{int}/(R_{int}+R_L)$ である。

(5) 第一の構成と第二の構成を重ね合わせると、外付けの電池は相殺するため、内部電源を有する回

路網に、 R_L を外部負荷としてとりつけた回路となる。この時外部負荷に流れる電流は、 $V_{int}/(R_{int}+R_L)$ であるから、

(6) 当該回路網は一個と電源 (V_{int}) と、それに直列な抵抗 (R_{int}) に等価であることが分かった。

左図は、重ね合わせの理を、内部回路が抵抗によるT形ネットワークと電池から構成される場合について示した。*R_{int}、及び、V_{int}は、*

$$R_{int} = R_2 + \frac{R_1 R_3}{R_1 + R_3}$$
$$V_{int} = \frac{R_3 V}{R_1 + R_3}$$

である。

1.5 相反定理

相反定理とは、回路網をインピーダンスマトリクッス (Z_{ij}) で表したときに、 $Z_{ij} = Z_{ji}$ となることをいう。

相反定理の応用を以下に示す。

(1) 第一のポートの電流、電圧をそれぞれ I_1 、 V_1 とし、第二のポートの電流、電圧をそれぞれ I_2 、 V_2 とする四端子回路において、

- (2) $V_1 = 0 \ge U$, $V_2 = V_{20} \ge U$ たとき、 $I_1 = I_{10} \ge x_0$ 、
- (3) $V_2 = 0 \ge U$, $V_1 = V_{10} \ge U$, $E \ge I_{20} \ge V_2 > V_2 >$

(4) このとき、

$$\begin{pmatrix} 0 \\ V_{20} \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I_{10} \\ I_2 \end{pmatrix}$$
$$\begin{pmatrix} V_{10} \\ 0 \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_{20} \end{pmatrix}$$

において、 $I_1 \ge I_2$ を消去すると、 $Z_{12} = Z_{21}$ の条件のもとで、

$$\frac{V_{10}}{V_{20}} = \frac{I_{20}}{I_{10}}$$

を得る。

以下に簡単な実例をもって、上記関係の有用性を示す。

左図は、3個の抵抗素子による T 型ネットワーク である。第一のポートに V を印加したときに、短 絡してある第二のポートには I の電流が流れるもの とする。一方、第二のポートに kV の電圧を印加す ると、短絡してある第二のポートには kI の電流が 流れる。

以上、受動回路についての主要な概念2について、復習を兼ねて議論をした。次に、本論である能動 回路についての議論に移る。

2 能動回路

能動回路とは、抽象的には、制御電源を有する回路であり、具体的には、受動回路素子に加えて BJT や FET 等を有する回路のことをいう。

最初に、理想的な能動素子としての演算増幅器の概念から議論をはじめて、非理想的な特性が支配 するトランジスタ素子の議論へと移行していくこととする。

演算増幅器 2.1

input

2.1.1 理想演算增幅器

理想演算増幅器とは、

(1) 信号を出力する第1端子と、第1端子から出力される信号と同相の信号を入力する第2端子 と、逆相の信号を入力する第3端子とを有する回路要素であって、

(2) 第2端子と第3端子間の電位差はゼロに保たれるとともに³、第2端子と第3端子間には電流 が流れることがなく (ナレータ)、

(3) 第1端子は、出力電圧、出力電流ともに任意であること(ノレータ)

を特徴とする回路要素である。別の定義においては、「理想演算増幅器とは、無限大の利得と、無限 大の入力抵抗と、ゼロの出力抵抗とを備えた差動入力・シングルエンド出力形の増幅器である。」とさ れている。この特徴を用いて以下のような機能回路を構成することができる。

+

AMP

左図は、非反転増幅器という形式である。利得は、

$$G = 1 + \frac{R_2}{R_1}$$

である。

非反転増幅器において、 $R_1 \rightarrow \infty$ とするとユニテ ィーゲイン・バッファーという形式を得る。利得は

G = 1

である。

output

²その他議論はしなかったが、Maximum power transfer thorem というものがある。

³第2端子を接地して演算増幅器を用いるときには、第3端子は、接地電位として取り扱うことができる。しかし、電流をこ

の端子に流し込むことはできない。そこで、このような第3端子を称して「仮想接地」されているという。

左図は、反転増幅器という形式である。利得は

$$G = -\frac{R_2}{R_1}$$

である。

反転増幅器において、帰還抵抗 R₂ に並列に容量 C を付加することにより、ローパス・フィルターとい う回路形式を得る。伝達関数は、ラプラス変換で表 すと

$$T(s) = -\frac{R_2}{R_1(sCR_2 + 1)}$$

である。 $s = i\omega$ とすれば、フーリエ変換での表現 を得る。

反転増幅器において、抵抗 R₁ に直列に容量 C を付加することにより、ハイパス・フィルターという回路形式を得る。伝達関数は

$$T(s) = -\frac{sCR_2}{sCR_1 + 1}$$

である。

ローパス・フィルターとハイパス・フィルターとを 複合することによりバンドパス・フィルターという 回路形式を得る。伝達関数は

$$T(s) = -\frac{sC_1R_2}{(sC_1R_1 + 1)(sC_2R_2 + 1)}$$

である。

左図は、ユニティーゲイン・バッファーを用いた Sallen-Key 型のローパス・フィルターである。出 力信号が反転していないことが特徴的である。ま た、左図の設定では、伝達関数は

$$T(s) = \frac{1}{(sCR+1)^2}$$

となる。

反転増幅器において、 $R_1 = 0$ とした増幅器の形式 を電流増幅器という。利得は

$$\frac{V}{I} = -R_2 \quad [\Omega]$$

である。

電流増幅器において、R2 をCに置換した増幅器の 形式を荷電増幅器という。利得は

$$\frac{V}{Q} = -\frac{1}{C} \quad [1/F]$$

である。

反転増幅器と非反転増幅器の構成を複合すると差動 増幅器という回路形式を得る。信号伝達特性は、

$$Vo = \frac{R_2}{R_1}(V_+ - V_-)$$

である。

左図は、オールパス・フィルターと呼ばれている回 路であって、近似的に入力信号を遅延させることが できる。伝達関数は、

$$T(s) = \frac{1 - sCR}{1 + sCR}$$

である。sCR≪1の近似のもとに、位相が周波数 の一次関数として推移するところに特徴がある。ち なみに、遅延時間 τ の同軸ケーブルの伝達関数は、 $exp(-s\tau)$ と表すことができるから、 $s \to 0$ の極限 で、 $\tau = 2CR$ とすれば、両者はO(s)までは一致 する。

左図に、ピークホールド回路の一例を示す。ピーク ホールド回路とは、入力信号の時系列中、最も大 きな波高値を保持する回路である。スイッチが閉じ ているとき、又は、信号が立ち上がりの途中にある ときには、出力信号は、入力信号に追従するが(ト ラッキングモード)、スイッチが開いておりしかも 入力信号が立ち下がっていくときには、ピークの電 圧を保持するようになっている(ホールドモード)。

正帰還と負帰還を複合することにより「ネガティブ インピーダンス・コンバータ (NIC)」という回路を 得る。左図の回路例では、入力端子からは負の容量 が見える。すなわち、入力インピーダンスは、

$$Z_{in} = -\frac{1}{sC}$$

である。

NICを用いても、発振回路を構成することができるのだが、ここでは、よりありふれた発振回路としてウィーンブリッジ形 RC 発振回路を示す。

input

回路は正帰還となっており、演算増幅器の入力部か ら出発して回路を一巡すると、ループ利得として、

$$\frac{sC_1R_2G}{s^2C_1C_2R_1R_2 + s(C_1R_1 + C_2R_2 + C_1R_2) + 1}$$

が得られる。そこで、位相条件から求められる発振 周波数と、電力条件から定められる発振条件は、

$$f_{osc} = \frac{1}{2\pi\sqrt{C_1C_2R_1R_2}} \\ G > 1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

となる。

左図は、スィッチと容量を用いた反転増幅器であっ て、スィッチト・キャパシター回路と言う形式に属 する。増幅器の伝達関数は、z-変換の形式で表現す るのが一般的であり、

$$T(z) = -\frac{C_1}{C_2} \frac{1}{1 - z^{-1}}$$

となる。 $z = exp(i\omega\tau)$ として、さらに $\omega\tau \to 0$ の 近似のもとで、伝達関数は、

$$T(e^{i\omega\tau}) = -\frac{C_1}{\tau} \frac{1}{i\omega C_2}$$

となる。

 $T(e^{i\omega\tau})$ は、 $R = \tau/C_1$ を入力に直列に配置し、 C_2 を帰還要素とした、既出の反転増幅器に相当することに注目されたい。ここで、 τ は、スィッチの切り替えの周期である。

前記の スィッチト・キャパシター回路による反転 増幅器において、スィッチの動作を変更することに よって非反転増幅器とすることができる。入力電圧 によって *C*₁ に蓄積された電荷を、増幅器に注ぎ込 むときには、スィッチを用いて、その極性を反転し ているからである。伝達関数は、

$$T(z) = \frac{C_1}{C_2} \frac{z^{-1/2}}{1 - z^{-1}}$$

以上のように、演算増幅器を応用して、さまざまな、機能回路を実現することができることが分かった。なお、演算増幅器の応用は、上記の形態に限られず、さらに広範囲に及ぶものである。

次に現実的な特性を備えた演算増幅器の特性と、関連する論点について議論する。まず、以下に制 御電源を用いた演算増幅器の類型を示す。演算増幅器には、電圧増幅形、電流対電圧増幅形、電圧対 電流増幅形、及び、電流増幅形の四態様がある。

前節では、演算増幅器を3端子素子として定義したが、一般的な議論を可能とするため、出力端子 を追加して、都合4端子の素子として以下議論を進める。

> 電圧増幅形の演算増幅器は、入力に並列に結合した抵抗 *r_i* と、出力に直列に結合した抵抗 *r_o* と、増 幅率

$$A(s) = \frac{A_o}{1 + s/s_o}$$

を有する電圧制御電圧源とによって表現することが できる。上記 A(s) のような周波数依存性を「ドミナ ント・ポール近似」という。高周波領域での詳細な 挙動を調べる必要があるときには、更に、マイナー ポールを導入する。非理想的効果として、さらにオ フセット電圧源、オフセット電流源を追加すること も可能である。

電流対電圧変換形の演算増幅器は、入力に並列に結 合した抵抗 r_i と、出力に直列に結合した抵抗 r_o と、 トランスインピーダンス・ゲイン

$$R(s) = \frac{R_o}{1 + s/s_o}$$

を有する電流制御電圧源とによって表現することが できる。電流制御電圧源は、抵抗 *r_i* に流れる電流 を感知するようになっている。

電圧対電流変換形の演算増幅器は、入力に並列に結 合した抵抗 *r_i* と、出力に並列に結合した抵抗 *r_o* と、 トランスコンダクタンス・ゲイン

$$G(s) = \frac{G_o}{1 + s/s_o}$$

を有する電圧制御電流源とによって表現することが できる。左図の電流源のシンボル中の矢印の向き は、上向きに訂正すること。 $V_+ - V_- > 0$ に対応す る電流の向きとは逆になっているためである。

電流増幅形の演算増幅器は、入力に並列に結合した 抵抗 *r_i* と、出力に並列に結合した抵抗 *r_o* と、電流 増幅率

$$B(s) = \frac{B_o}{1 + s/s_o}$$

を有する電流制御電流源とによって表現することが できる。左図の電流源のシンボル中の矢印の向き は、上向きに訂正すること。

これらの類型は、現実の素子値の相違はあるものの、相互に変換可能である。テブナンの定理を用いて電圧源と電流源を入れ替える操作を行えばよい。実際、電圧増幅器のパラメータにそろえてみると

	増幅形式	入力電圧	出力電圧	増幅率
(1)	電圧対電圧	$V_{+} - V_{-}$	$r_o I_{o+} + A(s)(V_+ - V)$	A(s)
(2)	電流対電圧	$r_i I_+$	$r_o I_{o+} + R(s)I_+$	$R(s)/r_i$
(3)	電圧対電流	$V_{+} - V_{-}$	$r_o\{I_{o+}+G(s)(V_+-V)\}$	$G(s)r_o$
(4)	電流対電流	$r_i I_+$	$r_o(I_{o+} + B(s)I_+)$	$B(s)r_o/r_i$

のようになる。 I_{o+} は、回路内部に向かう方向の電流を正の符号を有する電流としていることに注意 されたい。この一覧表によれば、形式的には、相互に換算可能であるから、特性を解析的に調べるの であれば、どれかひとつの形式に着目すればよいことになる。ただし、電圧入力形においては、 r_i は、 大きな値を採るのに対して、電流入力形においては、小さな値をとるのが一般的である。さらに、電 圧出力形においては、 r_o は、小さな値を採るのに対して、電流出力形においては、大きな値をとるこ とが一般的である。

そこで、第一の形式である電圧増幅形の演算増幅器についてその応答特性を四端子回路で表現する 方法について議論する。

ここでは、帰還回路への応用の観点から、Zパラメータ、Yパラメータ、Hパラメータ、及び、Gパ ラメータによる演算増幅器の表現方法について議論することにする⁴。

Zパラメータは、 $V_1 = V_+ - V_-$ 、 $V_2 = Vo_+ - Vo_-$ とし、また、 V_+ 端子から r_i に向かって流れ込

⁴さらに、補足的に F パラメータ、S パラメータについても言及する。

む電流を I_1 とし、さらに、 Vo_+ 端子から r_o に向かって流れ込む電流を I_2 とするとき、

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

によって定義される。Z パラメータの各成分を決定するためには、選択的に $I_1 = 0$ 、または、 $I_2 = 0$ として、特別の場合を考察するのが定石である。

最初に、 $I_2 = 0$ とすると、二つの関係式、

$$V_1 = Z_{11}I_1$$

 $V_2 = Z_{21}I_1$

を得る。 このとき、入力部について $V_1 = r_i I_1$ が、出力部について $V_2 = V_1 A(s) + r_o I_2 = V_1 A(s)$ が 成り立つから、

$$Z_{11} = r_i$$
$$Z_{21} = r_i A(s)$$

を得る。

次に、 $I_1 = 0$ とすると、二つの関係式、

$$V_1 = Z_{12}I_2$$
$$V_2 = Z_{22}I_2$$

を得る。このとき、入力部については $V_1 = r_i I_1 = 0$ が、出力部については、 $V_2 = A(s)V_1 + r_o I_2 = r_o I_2$ が成り立つから、

$$Z_{12} = 0$$
$$Z_{22} = r_o$$

を得る。結局、

$$Z = \begin{pmatrix} r_i & 0 \\ r_i A(s) & r_o \end{pmatrix}$$

となる。ここでは、もはや相反関係は成立していないことに注意されたい。 $Z_{12} = 0$ となっていることを、「単方向化されている。」ということがある。出力の負荷による電流 I_2 の変動が入力電圧 V_1 に影響しないことを意味する。

Yパラメータ

Yパラメータは、Zパラメータの逆行列として定義されるので、通常の方法によって、

$$\begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} 1/r_i & 0 \\ -A(s)/r_o & 1/r_o \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

を得る。

<u> Gパラメータ</u>

G パラメータは、

$$\begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ I_2 \end{pmatrix}$$

によって定義される。 $I_2 = 0$ とすると、

 $I_1 = G_{11}V_1$

 $V_2 = G_{21}V_1$

がなりたつ。したがって、 $I_2 = 0$ のときの、Zパラメータについての議論を参照して、

$$\begin{array}{rcl} G_{11} & = & \displaystyle \frac{1}{r_i} \\ G_{21} & = & A(s) \end{array}$$

とすればよい。次に、 $V_1 = 0$ とすると、

$$I_1 = G_{12}I_2$$
$$V_2 = G_{22}I_2$$

がなりたつ。 $V_1 = 0$ では、 $I_1 = 0$ であること、及び、制御電源の出力電圧がゼロであることを考慮すると、 $I_1 = 0$ のときのZパラメータの議論を参照して、

$$G_{12} = 0$$

$$G_{22} = r_o$$

を得る。結局、

$$G = \begin{pmatrix} 1/r_i & 0 \\ A(s) & r_o \end{pmatrix}$$

を得る。

この結果は、Z パラメータ、又は、Y パラメータから直接一次方程式の解として求めることもできるので、確認されたい。

Hパラメータ

Hパラメータは、Gパラメータの逆行列によって定義されるので、

$$\begin{pmatrix} V_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} r_i & 0 \\ -A(s)r_i/r_o & 1/r_o \end{pmatrix} \begin{pmatrix} I_1 \\ V_2 \end{pmatrix}$$

となる。H パラメータは、トランジスタの性能を特定をするために慣用されており⁵、各マトリクス成 分には、 $H_{11} = h_i$ 、 $H_{12} = h_r$ 、 $H_{21} = h_f$ 、及び、 $H_{22} = h_o$ のように読み替えて用いられることが多 い。ここで、 H_{12} 成分がゼロとなっているのは、出力ポートから入力ポートへの帰還(電圧帰還)が ないためである。バイポーラトランジスタでは、この効果も考慮される。

2.2 帰還回路

2.2.1 演算増幅器による帰還回路の諸方式

演算増幅器を用いた帰還回路における方式には、出力における信号の利用態様と入力における信号 の合算態様によって次の四態様がある⁶。

- (1) 並列・並列帰還、出力電圧を電流に変換して、入力電流と合算する方式である。
- (2) 直列・並列帰還、出力電圧を分圧して、入力電圧と合算する方式である。
- (3) 並列・直列帰還、出力電流を分流して、入力電流と合算する方式である。
- (4) 直列・直列帰還、出力電流を電圧に変換して、入力電圧と合算する方式である。

⁵H パラメータの各成分は、異なった単位を有している。このことから、ハイブリッドパラメータと呼ばれている。G パラ メータも同様の特徴を有しているが、こちらは、単にアルファベットの語順によって便宜的に命名されたものと思う。

⁶A・B 帰還というとき、A は、入力部における合算方式、B は、出力部における信号の利用形態を表している。

用語上の問題だけであるが、並列に代えてシャント、直列に代えてシリーズということがあるので 注意しておく。

演算増幅器には、四種類の形式があり、かつ、帰還の方式について四態様があるので、都合16種 類の帰還回路形式があることになるが、ここでは、代表的な演算増幅器として、電圧増幅形の演算増 幅器を取り上げて、四種類の帰還形式を議論していくことにする。

演算増幅器の形式を入れ替える操作は、先に示したように機械的に行うことができる。ただし、近 似解を得る操作については、再度注意を喚起しておく。電圧入力部においては、 $r_i \rightarrow \infty$ が妥当な近似 であるが、電流入力部においては、 $r_i \rightarrow 0$ が妥当である。また、電圧出力部においては、 $r_o \rightarrow 0$ が妥 当な近似であるが、電流出力部においては、 $r_o \rightarrow \infty$ が妥当である。

並列・並列帰還

並列・並列帰還の典型は、 V_{-} 端子を信号入力端子 とし、 V_{o+} 端子を信号出力端子とする帰還回路に おいて、 V_{o+} 端子と、 V_{-} 端子の間に抵抗 R_{f} を挿 入した増幅器である。既出の反転増幅器や、トラン スインピーダンス増幅器が並列・並列帰還を用いて いる。

並列・並列帰還の態様においては、Y パラメータ表示を用いると便利である。増幅器のY パラメータを Y_a とし、帰還系のY パラメータを Y_f とすると、 Y_a と Y_f は、入出力における電圧値を共有し、また電流については、加算的に取り扱うことができるからである。したがって、全体の系は、 Y_a と、 Y_f とを加算したY パラメータによって記述することができる。

そこで、具体的にYパラメータを書き下してみると、

$$Y_{a} = \begin{pmatrix} 1/r_{i} & 0 \\ A(s)/r_{o} & 1/r_{o} \end{pmatrix}$$
$$Y_{f} = \begin{pmatrix} 1/R_{f} & -1/R_{f} \\ -1/R_{f} & 1/R_{f} \end{pmatrix}$$
$$Y_{Ls} = \begin{pmatrix} 1/R_{s} & 0 \\ 0 & 1/R_{L} \end{pmatrix}$$
$$Y = Y_{a} + Y_{f} + Y_{Ls}$$
$$Z = Y^{-1}$$

のようになる。 Y_f は、簡単のために、抵抗 R_f による場合を示しているが、これに限られるものではない。例えば、抵抗による T 形ネットワークなども常用されている。 Y_a は、既出のものとは、 Y_{21} 成分の符号が異なっている。これは、 V_+ 端子が接地されており、帰還が V_- 端子に向かって行われるためであって、 V_+ 端子と V_- 端子の役割を入れ替える必要があるからである。さらに、 Y_{Ls} によって、負荷抵抗 R_L 及び信号源抵抗 R_s の効果を付加している。Y の逆行列をもとめることにより全体の系の Z パラメータが得られる。Z をそのまま提示すると複雑にすぎて、その意義が不明確になるので、 $r_i \to \infty$ かつ $r_o \to 0$ の近似のもとでの表式を示すこととする。このとき、

$$Z_{11} = R_s \| \frac{R_f}{1 + A(s)}$$

$$Z_{12} = \frac{r_o \mu}{1 + \mu A(s)}$$

$$Z_{21} = -R_f \frac{\mu A(s)}{1 + \mu A(s)}$$

$$Z_{22} = R_L \| \frac{r_o}{1 + \mu A(s)}$$

となる。ただし、 $\mu = \frac{R_s}{R_s + R_f}$ であって、これを、「帰還率」という。また、|| をもって、並列接続を 表現している。 Z_{11} は、帰還回路の入力インピーダンス⁷を表している。ただし、入力部には、並列に 信号源抵抗として R_s を付加しているので R_s を除いた正味の入力インピーダンスは、 $R_f/(1 + A(s))$ である。 $A(s) \to \infty$ の近似では、ゼロに漸近する。したがって、電流信号を入力するのに適した回路 構成であることが分かる。

 Z_{12} は、 $r_o \to 0$ 、または、 $A(s) \to \infty$ の近似で、ゼロに漸近する。帰還回路においても、「単方向性」 は、高いレベルで維持されているが分かる。ただし、高周波においては、A(s)がいわゆるロールオフ 特性を示すため、単方向性は良い近似といえなくなる。

 Z_{21} は、トランスインピーダンス・ゲインと呼ばれており、帰還回路の利得を表している。信号源 を、テブナンの等価回路に置き換えると、 $V_s = R_s I_1$ であるから、電圧利得は、

$$\frac{V_2}{V_s} = -\frac{R_f}{R_s} \frac{\mu A(s)}{1 + \mu A(s)}$$

のようになる。このように、 $r_o \to 0$ の近似のもとで、電圧利得は、出力負荷に依存しない。したがって、電圧を出力するに適した回路構成であることが分かる。また、 $A(s) \to \infty$ の近似では、電圧利得は、 $-R_f/R_s$ に漸近する。この結果は、ナレータ・ノレータモデルを支持している。

 Z_{22} は、出力インピーダンスを表している。ただし、出力部には、負荷抵抗 R_L が並列に挿入されているので、正味の出力インピーダンスは、 $r_o/(1 + \mu A(s))$ である。したがって、出力インピーダンスは、 $r_o \rightarrow 0$ の近似でゼロに漸近するとともに、 $|A(s)| \gg 1$ と相俟って、さらに小さな値を示すことになる。したがって、電圧信号を出力するのに適した回路構成であることが分かる。

結局、並列・並列帰還は、電流を入力とし、電圧を出力とする回路を安定化するものであるといえる。 **直列・並列帰還**

直列・並列帰還の典型は、 V_+ 端子を入力端子とし、 V_{o+} 端子を出力端子とする帰還回路において、出 力端子 V_{o+} の電圧をそのまま、又は、分圧して V_- 端子へ帰還するものである。非反転増幅器、ユニ ティーゲインバッファーなどが該当する。

直列・並列帰還の態様においては、H パラメータ表示を用いると便利である。増幅器のH パラメー タを H_a とし、帰還系のH パラメータを H_f とすると、 H_a と H_f は、入力電流 (I_1) と出力電圧 (V_2) を共有し、一方、入力電圧 (V_1) と出力電流 (I_2) については、加算的に取り扱うことができる。した がって、全体の系は、 H_a と、 H_f とを加算したH パラメータによって記述することができる。そこで、 具体的にH パラメータを書き下してみると、

$$H_{a} = \begin{pmatrix} r_{i} & 0\\ -A(s)r_{i}/r_{o} & 1/r_{o} \end{pmatrix}$$
$$H_{f} = \begin{pmatrix} R_{1}R_{2}/(R_{1}+R_{2}) & R_{1}/(R_{1}+R_{2})\\ -R_{1}/(R_{1}+R_{2}) & 1/(R_{1}+R_{2}) \end{pmatrix}$$
$$H_{af} = H_{a} + H_{f}$$

⁷用語としては、出力開放入力インピーダンスというのが正確である。

$$Y = Y_{af} + Y_{Ls}$$
$$Z = Y^{-1}$$

のようになる。H パラメータ (H_{af}) を一度 Y パラメータ (Y_{af}) に変換したところで、出力負荷、及び、 信号源抵抗の効果 (Y_{Ls}) を取込むようにしている。帰還回路は、抵抗 R_2 と R_1 による電圧分割回路で ある。 V_{o+} の電圧を、 $R_1/(R_1 + R_2)$ だけ減衰させて、 V_- 端子に印加するようになっている。

H パラメータから Y パラメータを求めるには、

$$Y = \begin{pmatrix} 1/H_{11} & -H_{12}/H_{11} \\ H_{21}/H_{11} & det(H)/H_{11} \end{pmatrix}$$

のようにすればよい。

これらを用いて Z パラメータを求め、 $r_i \rightarrow \infty$ かつ $r_o \rightarrow 0$ の近似を行うと、

$$Z_{11} = R_s \| (1 + \mu A(s)) r_i$$

$$Z_{12} = R_s \frac{r_o}{r_i} \frac{\mu}{1 + \mu A(s)}$$

$$Z_{21} = R_s (1 + \frac{R_2}{R_1}) \frac{\mu A(s)}{1 + \mu A(s)}$$

$$Z_{22} = R_L \| \frac{r_o}{1 + \mu A(s)}$$

となる。 但し、 $\mu = \frac{R_1}{R_1 + R_2}$ である。

入力部には、信号源抵抗が並列に挿入されているので、正味の Z_{11} は、 $(1 + \mu A(s))r_i$ である。 r_i は、 一般に、大きな値を示すので、A(s)の効果と相俟って、正味の Z_{11} は、非常に大きな値を示すことに なる。したがって、電圧信号を入力するのに適した回路構成であることが分かる。

 Z_{12} は、 $r_o \rightarrow 0$ の近似でゼロに漸近する。さらに、 $r_i \ge A(s)$ の効果もあるから、単方向性は高度に保証されることになる。

Z₂₁は、利得を表すパラメータであるが、信号源を電圧として換算すると、

$$\frac{V_2}{V_s} = (1 + \frac{R_2}{R_1}) \frac{\mu A(s)}{1 + \mu A(s)}$$

となる。ただし、例によって、 $V_s = R_s I_s$ である。電圧利得は、 $A(s) \to \infty$ の近似によって、 $1 + R_2/R_1$ に漸近する。この結果は、ナレータ・ノレータモデルを用いた既出の非反転増幅器の利得に一致している。

Z₂₂ については、並列・並列帰還の該当個所を参照されたい。

結局、直列・並列帰還は、電圧を入力とし、電圧を出力とする回路を安定化する回路構成であると いえる。

並列・直列帰還の典型は、 V_+ 端子を入力端子とし、 V_{o+} 端子を出力端子とする回路において、 V_{o-} 端子 と、 V_+ 端子の間に R_f を挿入し、さらに、 V_{o-} 端子 と接地の間に R_E を設けてなる帰還回路である。入 力部への帰還量が電流である点において、並列・並 列帰還と共通する。しかし、 V_{o-} 端子に現われる電 圧を電流に変換する点において、並列・並列帰還、 または、直列・並列帰還と相違する。実用的には、 三端子の演算増幅器の出力部に BJT 又は FET を とりつけて、エミッタ又はソースを R_E 側に、コレ クタ又はドレインを R_L 側とすることにより実現す ることができる。

並列・直列帰還の態様においては、G パラメータ表示を用いると便利である。増幅器のG パラメー タを G_a とし、帰還系のG パラメータを G_f とすると、 G_a と G_f は、入力の電圧 (V_1)及び出力の電 流 (I_2)を共通とし、一方、入力の電流 (I_1)及び出力の電圧 (V_2)については、加算的に取り扱うこと ができる。したがって、全体の系は、 G_a と、 G_f とを加算したG パラメータによって記述することが できる。そこで、具体的にG パラメータを書き下してみると、

$$G_a = \begin{pmatrix} 1/r_i & 0\\ A(s) & r_o \end{pmatrix}$$

$$G_f = \begin{pmatrix} 1/(R_f + R_E) & -R_E/(R_E + R_f)\\ R_f/(R_f + R_E) & R_f R_E/(R_f + R_E) \end{pmatrix}$$

$$G_{af} = G_a + G_f$$

$$Y = Y_{af} + Y_{Ls}$$

$$Z = Y^{-1}$$

と書くことができる。

G パラメータをY パラメータに変換するには、、

$$Y = \begin{pmatrix} \det(G)/G_{22} & G_{12}/G_{22} \\ -G_{21}/G_{22} & 1/G_{22} \end{pmatrix}$$

とすればよい。

これらを用いて、Z パラメータを求め、 $r_i \rightarrow \infty$ かつ $r_o \rightarrow 0$ の近似を行うと、

$$Z_{11} = R_s \| \{ \frac{R_E}{R_L + R_E} \frac{R_f + R_L(1 + R_f/R_E)}{1 + \frac{R_E}{R_L + R_E}} \}$$

$$Z_{12} = \frac{\mu R_L}{1 + \mu A(s)}$$

$$Z_{21} = \frac{\mu R_L \{1 + (1 + R_f/R_E)A(s)\}}{1 + \mu A(s)}$$

$$Z_{22} = R_L \| \frac{R_s R_E \{1 + R_f/R_s + A(s)\}}{R_s + R_E + R_f}$$

を得る。ただし、 $\mu = \frac{R_s R_E}{R_s R_L + R_f R_E + R_L R_f + R_L R_E + R_E R_s}$ である。

 Z_{11} は、 R_s を明示的に分離した形で示してある。 $A(s) \to \infty$ の近似において、 R_s を除いた正味の 部分は、ゼロに漸近する。したがって、並列・直列帰還は、電流信号を入力するのに適した回路構成 であることが分かる。

 Z_{12} は、 $A(s) \to \infty$ の近似でゼロに漸近する。並列・並列帰還及び直列・並列帰還では、 $r_o \to 0$ の条件だけで、すでにゼロに漸近しているのと相違している。

 Z_{21} は、電圧利得に換算し、さらに $A(s) \rightarrow \infty$ の近似のもとで、

$$\frac{V_2}{V_s} = \frac{R_L}{R_s} (1 + \frac{R_f}{R_E})$$

となる。負荷の抵抗値 R_L によって利得が調整できるという特徴を有する。

 Z_{22} は、負荷抵抗 R_L を明示的に分離した形で示してある。 $A(s) \to \infty$ の近似で R_L を除いた正味の 出力インピーダンスは、非常に高い出力インピーダンスを示すから、並列・直列帰還は、電流信号を 出力するのに適した回路構成であることが分かる。

結局、並列・直列帰還は、電流を入力とし、電流を出力とする回路を安定化するものであるといえる。 直列・直列帰還

直列・直列帰還の典型は、 V_- 端子を入力端子とし、 V_{o+} 端子を出力端子とする回路において、 V_+ 端子 に V_{o-} 端子の電圧を直接、または、分圧して帰還 するとともに、 V_{o-} 端子の電圧を電流に変換するよう にした帰還回路である。

直列・直列帰還の態様においては、Z パラメータ表示を用いると便利である。増幅器の Z パラメー タを Z_a とし、帰還系の Z パラメータを Z_f とすると、 Z_a と Z_f は、入出力の電流 (I_1, I_2) を共通と し、一方、入出力の電圧 (V_1, V_2) については、加算的に取り扱うことができる。したがって、全体の 系は、 Z_a と、 Z_f とを加算した Z パラメータによって記述することができる。そこで、具体的に Z パ ラメータを書き下してみると、

$$Z_a = \begin{pmatrix} r_i & 0\\ -r_i A(s) & r_o \end{pmatrix}$$
$$Z_f = \begin{pmatrix} R_E & R_E\\ R_E & R_E \end{pmatrix}$$
$$Y = (Z_a + Z_f)^{-1} + Y_{Ls}$$
$$Z = Y^{-1}$$

のように書くことができる。

Zパラメータを求め、 $r_i \rightarrow \infty$ かつ $r_o \rightarrow 0$ の近似を行うと、

$$Z_{11} = R_s \| (1 + \mu A(s)) r_i$$

$$Z_{12} = \frac{\mu}{1 + \mu A(s)} \frac{R_s R_L}{R_E r_i}$$

$$Z_{21} = -\frac{\mu A(s)}{1 + \mu A(s)} \frac{R_s R_L}{R_E}$$

$$Z_{22} = R_L \| (1 + A(s)) R_E$$

となる。ただし $\mu = \frac{R_E}{R_L + R_E}$ である。

*Z*₁₁ については、直列・並列帰還の場合と同様である。電圧入力に適した回路構成であることが分かる。

 Z_{12} は他の帰還方式と同様小さな値を示すが、これが $r_i \to \infty$ によって、達成されている点が特徴的である。 $A(s) \to \infty$ の効果が相乗的に作用して、単方向性が高度に保証されることになる。

 Z_{21} は、電圧利得に換算し、 $A(s) \rightarrow \infty$ の近似を行うと、

$$\frac{V_2}{V_s} = -\frac{R_L}{R_E}$$

となる。利得が出力負荷に比例しているという特徴を有する。

さらに、 Z_{22} のうち、正味の出力インピーダンスが R_E に比例しているという特徴を有する。 $A(s) \rightarrow \infty$ の近似のもとで出力インピーダンスは非常に高い値を示すから、直列・直列帰還は、電流信号を出力するのに適した回路構成であることが分かる。

結局、直列・直列帰還は、電圧を入力とし、電流を出力とする回路を安定化するものであるといえる。 **F**パラメータによる取扱い

Fパラメータ表示とは、

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix} \begin{pmatrix} V_2 \\ I_2 \end{pmatrix}$$

なる関係式により、第一のポートと第二のポートとを関係づけるものである。ただし、*I*₂ は、四端子 回路から電流が流出する方向をもって正の向きと定義されているので注意すること。一つの四端子回 路の出力が次の四端子回路の入力信号になっているような場合には、F パラメータによるマトリクッ スの積によって総合応答を求めることができるという利点がある。

そこで、帰還回路を、増幅に係るブロックのFパラメータ(F_A)と帰還に係るブロックのFパラ メータ(F_f)との二つの要素で並列・並列帰還を記述することを考えてみる。

入力部及び出力部には、それぞれ信号源 $I_s \ge I_L > I_L > I_L = I$

 F_A は、入力部の信号源抵抗に係る部分 (F_s) と、演算増幅器に係る部分 (F_a) と、出力負荷に係る部分 (F_L) との積として表現することができる。逐次的に信号に対して付加される効果を積として表現することができるというのが、F パラメータ表示の特徴であるから、

$$F_A = -F_s F_a F_L$$

となる。積の順序は、入力からみて遠い方がより右側に現われるようになっている。また、全体に負 の符号がついているのは、反転増幅器を想定しているからである。

電圧増幅形の演算増幅器については、Z、Y、G、Hパラメータでの表現をすでに与えているので、 ここでは、ZパラメータをFパラメータに変換することとする。Fパラメータは、Zパラメータを用 いて、

$$F = \begin{pmatrix} Z_{11}/Z_{21} & det(Z)/Z_{21} \\ 1/Z_{21} & Z_{22}/Z_{21} \end{pmatrix}$$

$$F_a = \frac{1}{A(s)} \begin{pmatrix} 1 & r_o \\ 1/r_i & r_o/r_i \end{pmatrix}$$

となる。 F_a は、行列式がゼロとなるため、逆行列を作ることができないことに注意されたい。「単方 向性」による帰結である。また、 F_s 、 F_L および F_f は、それぞれ、

$$F_L = \begin{pmatrix} 1 & 0 \\ 1/R_L & 1 \end{pmatrix}$$

$$F_s = \begin{pmatrix} 1 & 0 \\ 1/R_s & 1 \end{pmatrix}$$

$$F_f = \begin{pmatrix} 1 & R_f \\ 0 & 1 \end{pmatrix}$$

のように書くことができる。

次に、Fパラメータと端子における電圧・電流の関係は、

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = F_A \begin{pmatrix} V_2 \\ I_2 \end{pmatrix}$$
$$\begin{pmatrix} V_2 \\ I_2 + I_L \end{pmatrix} = F_f \begin{pmatrix} V_1 \\ I_1 - I_s \end{pmatrix}$$

のようになるので、これを整理すると、

$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = -F_A (1 - F_f F_A)^{-1} F_f \begin{pmatrix} 0 \\ I_s \end{pmatrix} - F_A (1 - F_f F_A)^{-1} \begin{pmatrix} 0 \\ I_L \end{pmatrix}$$
$$\begin{pmatrix} V_2 \\ I_2 \end{pmatrix} = -(1 - F_f F_A)^{-1} F_f \begin{pmatrix} 0 \\ I_s \end{pmatrix} - (1 - F_f F_A)^{-1} \begin{pmatrix} 0 \\ I_L \end{pmatrix}$$

を得る。

信号源 *I_s* と *I_L* に対応して、四つの行列が係数として現われている。それぞれの行列の行列要素の (1、2) 成分が、*Z*₁₁、*Z*₁₂、*Z*₂₁、*Z*₂₂ に対応する。

また、 F_f 、 F_A が行列であることを忘れたとすると、上記第一式の第一項は、 F_A^{-1} を順方向伝達関数 とし、 $-F_f^{-1}$ を帰還伝達関数とした場合の残留偏差に対応する。第二式の第一項は、同様にして、第 ーポートに対する第二ポートにおける利得であると理解できる。さらに、第一式第二項は、 F_A を順方 向伝達関数とし、 $-F_f$ を帰還伝達関数とした場合の、第二ポートに対する第一ポートにおける利得で あると理解できる。符号が負になっているのは、 I_L の符号が F_A に対応する四端子回路の電流の方向 と逆になっているからである。同様にして、第二式第二項は、信号 I_L に対応する残留偏差として理解 できる。このようにして、Fパラメータによる解法では、制御工学の手法と一定の対応をつけること ができそうである。

F パラメータによる手法は、帰還回路の解析においては、専ら複雑になるだけで、具体的な利益が ない様にも考えられる。しかし、発振回路の解析などで、回路ループに切断を入れなければならない ような場合には、有効性を発揮する⁸。

⁸例えば、移相形の発振回路の解析のような場合が該当する。MOSFETの応用として後で議論する。既出のウィーンブリッジ発振回路を解析するときにはより簡便な手法による方が良いと考える。

負帰還回路について延々と議論してきたが、ここで、負帰還回路の利点について整理しておこうと 思う。

線形性の改善

非反転増幅器の利得は、

$$g(s) = (1 + \frac{R_2}{R_1})\frac{\mu A(s)}{1 + \mu A(s)}$$

と書ける。したがって、

$$\frac{\Delta g(s)}{g(s)} = \frac{1}{1 + \mu A(s)} \frac{\Delta A(s)}{A(s)}$$

となる。これは、利得 g(s) の変動に対する、A(s) の寄与が、負帰還をかけない場合にくらべて $1/(1 + \mu A(s))$ 倍だけ改善されていることを意味する。もし、A(s) が信号の振幅に対して、何らかの依存性をもっていたとしても、上記の効果によって、これは抑圧されることになる。したがって、負帰還は、増幅器の線形性を改善するということができる。

周波数帯域の改善

 $\overline{A(s)}$ の周波数帯域は、ドミナントポール近似のもとに $\frac{s_o}{2\pi}$ である。一方、非反転増幅器においては、

$$g(s) = (1 + \frac{R_2}{R_1}) \frac{\mu A_0}{1 + \mu A_0 + s/s_0}$$

= $(1 + \frac{R_2}{R_1}) \frac{\mu A_0}{1 + \mu A_0} \frac{1}{1 + s/\{s_0(1 + \mu A_0)\}}$

と書き直すことができるので、非反転増幅器の周波数帯域は、 $\frac{s_0(1 + \mu A_0)}{2\pi}$ となり、負帰還をかけない場合との比較で $1 + \mu A_0$ 倍に改善していることが分かる。

また、低周波での利得と周波数帯域の積は、

$$g(0)\frac{s_0(1+\mu A_0)}{2\pi} = (1+\frac{R_2}{R_1})\frac{\mu A_0 s_0}{2\pi}$$
$$= \frac{A_0 s_0}{2\pi}$$

のように一定の値となる⁹ので、低周波の利得を高くすると、周波数帯域が狭まり、反対に、周波数帯 域を広くとるためには低周波での利得を下げる必要あることが分かる。

入出力インピーダンスの改善

すでに、議論してきたように、負帰還の方式には、四通りの方法があり、入力・出力インピーダン スを、目的に応じて、高く、又は、低く設定することができる。

雑音耐性の改善

負帰還回路において、順方向伝達関数を、 $G_1 \ge G_2$ の縦続接続とし、 G_f を帰還伝達関数とすると、 (1)入力部から出力部への伝達関数は、 $\frac{G_1G_2}{1+G_1G_2G_f}$ であり(以下、「総合応答」という。)、 (2) $G_1 \ge G_2$ の中間から、最終出力までの伝達関数は、 $\frac{G_2}{1+G_1G_2G_f}$ であって、 (3)さらに、 G_2 の出力部から、出力までの伝達関数は、 $\frac{1}{1+G_1G_2G_f}$ である。

(4) 帰還がない場合には、上記利得は、それぞれ、*G*₁*G*₂、*G*₂、1となるから、帰還をかけても外 乱に対する耐性が向上するわけではないとも考えられる。確かに、総合応答を基準に考えればそのよ うになっている。

⁹これを、「利得・帯域幅一定の法則」という。

(5)しかし、帰還のないシステムにおける総合利得を、帰還の掛かっているシステムの総合応答 に合わせることにより様相は異なったものになる。

(6)まず、帰還のない場合において、後段側の G_2 の利得を $\frac{1}{1+G_1G_2G_f}$ 倍として、総合応答を そろえると、各部からの応答は、 $\frac{G_1G_2}{1+G_1G_2G_f}$ 、 $\frac{G_2}{1+G_1G_2G_f}$ 、1となって、前二者においては、帰 還回路のそれと一致するが、出力部における外乱耐性において、帰還回路に劣っていることが分かる。

(7) つぎに、前段側の G_1 の利得を $\frac{1}{1+G_1G_2G_f}$ 倍として、総合応答をそろえると、各部からの応答は、 $\frac{G_1G_2}{1+G_1G_2G_f}$ 、 G_2 、1となって、入力部からの応答を除いては、帰還回路に劣っていることになる。

このことから、一見外乱に対する耐性が帰還によって改善されないとの見解は誤りであることが分かる。

2.2.3 負帰還回路の安定性

これまでの議論で、一般に、順方向の利得は、分母に1+µA(s)なる因子を有する式で記述される ことが分かっている。したがって、もしこの因子がゼロに近い値を示すことがあるとすれば帰還回路 の動作は不安定になるであろうことが予想される。

回路の不安定性は、ラプラス変換の逆変換のアイデアで一応説明することができる。 $1 + \mu A(s) = 0$ とするようなsのことをポールという。このポールは、一般に複素数になるのであるが、それを $s_r + is_i$ のようにおくと、このポールに対応するラプラス逆変換には、 $e^{s_r t}e^{is_i t}$ のような因子が現われる。このうち、 $e^{is_i t}$ の因子は、振動解を与えるもので、絶対値をとれば1であるから発散に到ることはない。一方 $e^{s_r t}$ の因子は、 s_r が負であれば、時間とともに減衰するのであるが、もし小さな値であったしても、それが正である限り、時間の経過と共に発散に到る性格のものである。

特性方程式

そこで、一般に、 $1 + \mu A(s) = 0$ を特性方程式と呼び、この特性方程式の根の実部がすべて負である こと、又は、同じことであるが、複素平面上で左半面にあれば、当該帰還回路は安定であると判定す ることができる。

 μ が*s*に依存しない正定数であって、 $A(s) = \frac{A_o}{1 + s/s_0}$ と書けるような場合には、帰還回路は、安定である。特性方程式 $1 + \mu A(s) = 0$ の根は $s = -s_0(1 + \mu A_o)$ であって、負の実数だからである。

A(s)が、ドミナントポールに加えて、高周波側に付加的なポール s_1 を有する場合であっても、 $s_0 > 0$ かつ $s_1 > 0$ である限りにおいて、その根の実部は、負であって、帰還回路は、安定である。一方、A(s)がさらなるポールを有する場合、又は、 μ がsについてのポールを有する場合には、不安定となること がある。例えば、 $\mu(s)A(s) = \frac{A_0}{(1+s/s_0)^3}$ と書けるような場合には特性方程式の根は、 $-(1+A_o^{1/3})s_0$ の他に、 $(-1 + \frac{A_0^{1/3}}{2} \pm i \frac{\sqrt{3}A_0^{1/3}}{2})s_0$ なる根が生ずるので、 $A_0 < 8$ の範囲では安定であるが、 $A_0 = 8$ では振動が持続し、 $A_0 > 8$ では、発散解を生ずることになる。

ナイキスト線図

具体的に、特性方程式の根を求めることは一般には困難である。そこで、ラウス・フルビッツの安定 判別法¹⁰や一巡伝達関数のベクトル軌跡から安定性を判別するナイキストの安定性判別法がある。こ のうち、後者のナイキストの安定性判別法について述べる。

¹⁰例えば、「制御理論の基礎」、東京電機大学出版局、1999年9月20日を参照して下さい。

$$1 + \mu(s)A(s) = \frac{1}{s^n} \frac{\prod_{i=0}^{n_z} (s - z_i)}{\prod_{i=0}^{n_p} (s - p_i)}$$

のように書けるから、s 平面上での閉路を、 $(0, -i\infty) \rightarrow (0, i\infty)$ のようにとり、さらに、s 平面の右 半面を右手に見る様にして周回させる(すなわち、時計の廻る向きにとる。)ものとする。これを $1 + \mu(s)A(s)$ の複素平面上にマップすると、閉路内に含まれている z_i 、及び、 p_i それぞれの個数 M_z 、 M_p に対応して $M_z - M_p$ 回だけ原点の周りを時計周りに周回することになる。原点を平行移動すれ ば、これを $\mu(s)A(s)$ の複素平面上で、(-1,0)の回りを、 $M_z - M_p$ 回だけ時計回りに周回するといい かえることができる。安定であれば、特性方程式は、右半面にゼロを持たないので、 $M_z = 0$ となり、 (-1,0) 回りを反時計回りに回転するか、又は、まったくその回りを回転しないかの二通りである。

この命題の対偶をとって、(-1,0)の回りを回転し、その回転方向が時計回りであるならば、不安定 である、ということになる¹¹。

一巡伝達関数が、

$$\mu A(s) = \frac{K}{(s+1)(2s+1)(4s+1)}$$

である場合について、K = 5 として、ナイキスト線図を示す。(-1,0)は、周回軌跡の外にあるので、安 定であると判定できる。

さらに、K = 15とすると、(-1,0)は、周回軌跡の 内部に含まれることとなって、帰還回路は不安定と 判定される。

¹¹論理的帰結として、不安定であっても (-1,0)の回りを時計回り回転しないことは有り得る。もっとも、現実的な回路では、 $M_p = 0$ となっているので、実用的には問題とはならない。

安定である場合であっても、さらに、(-1,0)の周りへの周回軌跡の近づき方によって安定性の度合い を評価することができる。位相余裕と、利得余裕とよばれる量がこれに該当する。すなわち、前者は、 (-1,0)を中心とする単位円と、周回軌跡が交差する点の位相角から 180度までの角度差を基準とする ものであって、これが大きい程安定度が高いと判定される。後者は、周回軌跡が 180度の動径を過る 点の座標 (-x₀,0)をもって利得余裕とするものであって、(-1,0)から離れていて、(0,0)の方に寄って いるほど安定であると判定される。通常 -20*logx*₀を値とし、デシベルを単位として表示される。同 様の議論は、いわゆる、ボード線図を用いても行うことができる。

Sパラメータによる取扱い

Sパラメータは、定インピーダンス線路(同軸ケーブルのような導波路)を用いて、四端子回路に 信号を供給したときに、各ポートにおける信号の反射係数および透過係数によって回路特性を特定し ようとするものである。

電圧・電流信号を、各ポートに向かう方向の信号 (V^+, I^+) と、遠去かる方向の信号 (V^-, I^-) に分けたとき、

$$\begin{pmatrix} V_1^- \\ V_2^- \end{pmatrix} = S \begin{pmatrix} V_1^+ \\ V_2^+ \end{pmatrix}$$
$$\begin{pmatrix} I_1^- \\ I_2^- \end{pmatrix} = S \begin{pmatrix} I_1^+ \\ I_2^+ \end{pmatrix}$$

により、Sパラメータを定義する。一方、Zパラメータを用いて、

$$\begin{pmatrix} V_1^+ + V_1^- \\ V_2^+ + V_2^- \end{pmatrix} = Z \begin{pmatrix} I_1^+ - I_1^- \\ I_2^+ - I_2^- \end{pmatrix}$$

の関係がなりたち、また、定インピーダンス線路の特性インピーダンスを z0 とすれば、

$$\begin{pmatrix} V_1^+ \\ V_2^+ \end{pmatrix} = \begin{pmatrix} z_0 & 0 \\ 0 & z_0 \end{pmatrix} \begin{pmatrix} I_1^+ \\ I_2^+ \end{pmatrix}$$
$$\begin{pmatrix} V_1^- \\ V_2^- \end{pmatrix} = \begin{pmatrix} z_0 & 0 \\ 0 & z_0 \end{pmatrix} \begin{pmatrix} I_1^- \\ I_2^- \end{pmatrix}$$

であるから、結局SパラメータをZパラメータによって、

$$S = (Z + Z_0)^{-1}(Z - Z_0)$$

のように表すことができる。ただし、 $Z_0 = \begin{pmatrix} z_0 & 0 \\ 0 & z_0 \end{pmatrix}$ である。回路が安定である限りにおいては、反射係数は、1を超えることはないと考えられる。したがって、反射係数を基準として、回路の安定性を評価することができるはずである。

第一のポートに接続された導波路と、第二のポートに接続された導波路が、それぞれの遠端において反射係数 Γ_s と Γ_L を生ずるような受動回路によって終端されているとき、第一のポートにおける反射係数 Γ_1 と、第二のポートにおける反射係数 Γ_2 は、

$$\Gamma_1 = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}}$$

$$\Gamma_2 = S_{22} + \frac{S_{12}S_{21}\Gamma_s}{1 - S_{11}}$$

と表すことができる。したがって、 $|\Gamma_1| < 1$ 、かつ、 $|\Gamma_2| < 1$ を安定性の基準とすることが考えられる。 Zパラメータが、

$$\begin{pmatrix} \frac{R_f}{1+A(s)} & \frac{r_o}{1+A(s)} \\ -\frac{R_f A(s)}{1+A(s)} & \frac{r_o}{1+A(s)} \end{pmatrix}$$

で与えられる増幅器、すなわち、電圧増幅形の演算増幅器によるトランス・インピーダンス増幅器¹²についての、Sパラメータは、

$$S = \begin{pmatrix} -\frac{\mu A + 2\mu - r_o/z_0 - 1}{\mu A + 1} & \frac{2\mu r_o/z_0}{\mu A + 1} \\ 2A\frac{\mu - z_0/(r_o + z_0)}{\mu A + 1} & -\frac{\mu A + (z_0 - r_o)/(z_0 + r_o)}{\mu A + 1} \end{pmatrix}$$

となる。ただし、 $\mu = \frac{z_0^2}{(R_f + z_0)(r_o + z_0)}$ である。 S_{12} 成分を無視する近似 ($r_o \ll z_0$)のもとでは、 $\Gamma_1 = S_{11}$ 、 $\Gamma_2 = S_{22}$ であるから、安定性の条件として、

$$\begin{array}{rcl} ReA &>& -1+\frac{r_o}{2\mu z_0}\\ ReA &>& -\frac{r_o}{\mu(r_o+z_0)} \end{array}$$

を得る。したがって μA がナイキストの安定性判別条件において、安定側に位置する場合であっても、 上記 S パラメータによる判定では、不安定という判断が下されることが有り得る。

一般には、いかなる反射条件 Γ_s 、 Γ_L においても、 $|\Gamma_1| < 1$ 、及び、 $|\Gamma_2| < 1$ を維持できる条件として、

$$det(S) < 1$$

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + det(S)^2}{2|S_{12}S_{21}|} > 1$$

が知られている。これらは、ナイキストの安定性判別条件よりは、はるかに厳しい条件になっている。 出力負荷や、信号源のインピーダンスに依存しない安定性¹³を要求しているからである。

2.3 トランジスタ

前節まで、演算増幅器について制御電源を導入することによりモデル化し、さらに、その演算増幅器 を用いた帰還回路について議論してきた。しかし、制御電源は、理想化された観念上の存在であるか ら、これを現実の電子素子により実現する手段を用意しなければならない。 この手段を具体的に提供 するのがトランジスタである。トランジスタをモデル化するためには、再び制御電源が導入されるの であるが、今度は、物理現象を置換するために導入する点において、前節までのように、電子回路の 機能を置換するために導入してきたのとは異なっている。もちろん、回路解析上の技法は、同様の手 法を採ることができるので、できるだけ相違点が明確になるように議論を進めたい。特に、バイポー ラトランジスタ (BJT) と電界効果形トランジスタ (FET) について議論する。

2.3.1 BJT

バイポーラトランジスタとは、三層構造からなる半導体素子であって、中間の半導体層のタイプを 両側の半導体層のタイプとは逆極性をなすように構成し、中間の半導体層に注入された電流を増幅し

 $^{^{-12}}$ 並列・並列帰還の議論で例示したトランスインピーダンス増幅器の Z パラメータにおいて $\mu = 1$ としたものである。 $R_s \to \infty$ として増幅器の裸の特性を表現したものと考えれば良い。

¹³無条件安定性という。

て、両側の半導体層に設けられた電極間に生ずる電流として取出すことができるという特徴を有する 半導体素子である。半導体のタイプには、p-タイプと n-タイプとがあるから、バイポーラトランジス タには、それらに対応して、npn 型と呼ばれるものと、pnp 型と呼ばれるものがある。前者は、ベー スが p-タイプとなっており、後者は、それが n-タイプである。

以下、直流特性と、交流特性に分けて、その特徴を議論する。

直流特性

バイポーラトランジスタは、エミッタ、ベース、コレクタの三端子からなる。ベースが中間層に対応し、エミッタとコレクタが外層部に対応する。通常の動作条件では、ベース・エミッタ接合は、順方向にバイアスされ、ベース・コレクタ接合は、逆方向にバイアスされて空乏層が生じている。エミッタから注入されたキャリヤは、うすいベース領域を通り抜け空乏層電界に引かれて、コレクタ電極に到るようになっている。ベース電流は、ベース領域からエミッタ部に拡散するキャリアーと、エミッタから注入されたキャリアーのうちベース領域で再結合するキャリヤーによって構成されるが、一般に、コレクタ・エミッタ間を流れる電流に比べて小さな値となる。

直流特性は、エバース・モルの式によって書き表すのが一般的である。すなわち、

$$I_{C} = \alpha_{F} I_{s} \{ exp(qV_{BE}/kT) - 1 \} - I_{CBO} \{ exp(-qV_{CB}/kT) - 1 \}$$

$$I_{E} = I_{s} \{ exp(qV_{BE}/kT) - 1 \} - \alpha_{R} I_{CBO} \{ exp(-qV_{CB}/kT) - 1 \}$$

のように書き表すことができる。ここで、 I_C は、コレクタ電流を、 I_E は、エミッタ電流を、 V_{BE} は、 エミッタ電位を基準としたベース電圧を、 V_{CB} は、ベース電位を基準としたコレクタ電圧を、 I_s は、 ベース・エミッタ間ダイオードの逆方向飽和電流を、 I_{CBO} は、ベース・コレクタ間ダイオードの逆方 向飽和電流を、 α_F は、エミッタからコレクタへの電流伝達率を、 α_R は、反対にコレクタからエミッ タへの電流伝達率を、それぞれ表している。なお、qは、素電荷を、kは、ボルツマン定数を、Tは、 絶対温度を表している。通常の条件では、 $V_{CB} \gg kT/q$ であり、また、 $\alpha_R \ll 1$ と近似することがで きるので¹⁴、上記エバース・モルの式は、

$$I_C = \alpha_F I_s \{ exp(qV_{BE}/kT) - 1 \} + I_{CBO}$$

$$I_E = I_s \{ exp(qV_{BE}/kT) - 1 \}$$

のように簡略化することができる。電流が保存することから、 I_B をベース電流とすると、 $I_E = I_C + I_B$ であるから、

$$I_B = (1 - \alpha_F)I_E - I_{CBO}$$
$$I_C = \alpha_F I_E + I_{CBO}$$

を得る。

結局、トランジスタの直流動作を支配しているパラメータは、 α_F 、 I_{CBO} 、及び、 V_{BE} である。これら以外に I_s も関与しているのだが、 I_s は、トランジスタを選択してしまえば決まってしまう量であり、動作条件に左右されない点において、 α_F 、 I_{CBO} 、及び、 V_{BE} とは異なっている。このうち V_{BE} は、ベース・エミッタ間の電圧を表すものであって従属変数ではないかとの疑問が生ずる。しかし、エバース・モルの式に立ち戻ると、 $V_{BE} \gg kT/q$ の近似のもとに、

$$V_{BE} = \frac{kT}{q} ln(\frac{I_E}{\alpha_F I_s})$$

 $^{^{14}\}alpha_F$ は、エミッタの不純物濃度を、ベースのそれに比べて、高濃度とすることによって性能が達成されるものである。一方、 コレクタの不純物濃度は、コレクタ・ベース耐圧の観点から低濃度の抑えられているため、 α_R は、小さな値となっている。

であって、エミッタ電流が一桁変動したとしても、 V_{BE} は、50 mV 程度の変動しかない。そこで、一般に、 V_{BE} を定数¹⁵として取り扱うことができるのである。

ところで、一般に、 α_F 、 I_{CBO} 、及び、 V_{BE} は、定数として回路設計を行うのであるが、原理的に、 温度及びバイアス条件によって変化しうる量であるから、これらの変動に対する回路の安定性が問題 となる¹⁶。

以下具体例によって、上記安定性の問題を検討する。

左図は、npn型バイポーラトランジスタの直流バイ アス回路を示している。エミッタの電流を I_E する とエミッタの電圧は、 R_3I_E であるから、ベースの 電圧は、

$$R_3I_E + V_{BE}$$

である。一方、ベース電流は、 $(1 - \alpha_F)I_E - I_{CBO}$ と表せることを用いると、ベース電圧は、

$$\frac{R_1 V_{CC}}{R_1 + R_2} - \frac{R_1 R_2}{R_1 + R_2} \{ (1 - \alpha_F) I_E - I_{CBO} \}$$

となる。ここで、テブナンの等価回路のアイデアを 用いていること注意されたい。

そこで、エミッタ電流 *IE* は、

$$I_E = \frac{V_{CC}R_{TH}/R_2 - V_{BE} + R_{TH}I_{CBO}}{R_3 + R_{TH}(1 - \alpha_F)}$$

となる。ただし、 $R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$ と置いた。コレクタ電流は、 $\alpha_F I_E + I_{CBO}$ であったから、

$$I_C = \frac{\alpha_F (V_{CC} R_{TH} / R_2 - V_{BE}) + (R_3 + R_{TH}) I_{CBO}}{R_3 + R_{TH} (1 - \alpha_F)}$$

を得る。 V_{BE} 、 $h_{FE} = \frac{\alpha_F}{1 - \alpha_F}$ ¹⁷、及び、 I_{CBO} に対する、コレクタ電流の感度を安定性パラメータという。安定性パラメータは、具体的には、

$$\frac{\Delta I_C}{\Delta V_{BE}} = -\frac{\alpha_F}{R_3 + R_{TH}(1 - \alpha_F)}$$

$$\frac{\Delta I_C}{\Delta I_{CBO}} = \frac{R_3 + R_{TH}}{R_3 + R_{TH}(1 - \alpha_F)}$$

$$\frac{\Delta I_C}{\Delta h_{FE}} = \frac{\Delta I_C}{\Delta \alpha_F} \frac{\Delta \alpha_F}{\Delta h_{FE}} = \frac{(R_3 + R_{TH})(V_{CC}R_{TH}/R_2 - V_{BE})(1 - \alpha_F)^2}{\{R_3 + R_{TH}(1 - \alpha_F)\}^2}$$

となる。

*R*₃の存在によって上記安定性パラメータが改善されていることが分かる。

 $^{{}^{15}}I_s = 10^{-14} A$ 、 $I_C = 10^{-3} A$ とすると、 V_{BE} は、0.66V 程度となる。

^{162.2.3} 章で議論した安定性と区別するために直流安定性ということがある。

¹⁷BJT の項で導入した h_{fe} の低周波極限を h_{FE} と表記する。

同様の観点から、左図について、コレクタ電流を求 めてみる。左図のバイアス方式を称して、「オート バイアス」ということがある。エミッタ側から攻め て、ベース電圧を求めると、 $R_3I_E + V_{BE}$ である。 一方、 V_{CC} の側から攻めてみると、この回路では、 R_4 に流れる電流は、エミッタ電流と一致すること を考慮して、ベース電圧は、

$$V_{CC} - R_4 I_E - R_2 \{ (1 - \alpha_F) I_E - I_{CBO} \}$$

である。

そこで、エミッタ電流と、コレクタ電流は、

$$I_E = \frac{V_{CC} - V_{BE} + R_2 I_{CBO}}{R_3 + R_4 + (1 - \alpha_F)R_2}$$
$$I_C = \frac{\alpha_F (V_{CC} - V_{BE}) + (R_2 + R_3 + R_4)I_{CBO}}{R_3 + R_4 + (1 - \alpha_F)R_2}$$

となる。 R_3 の安定化に対する効果は、 R_4 の寄与と同等であるため、 $R_3 = 0$ としても、安定化は、な お R_4 によって維持される。これが、オートバイアス方式の特徴である。

エミッタ抵抗にる安定化は、直列帰還の効果であり、オートバイアスによる安定化は、並列帰還の効 果であると考えることができる。

エバース・モルの式で表現されていない効果として「アーリー効果」がある。アリー効果とは、コレ クタ・エミッタ間の電圧 V_{CE} が増加すると、それにともなって I_C も増大する現象である。物理的に は、コレクタ電位の上昇によって、ベース領域に空乏層が広がることにより、実効的なベースの厚さ が減少するためであると説明することができる。回路モデルでは、一般に、アーリー電圧 (V_A) という パラメータを導入して、

$$I_C = \alpha_F (1 + \frac{V_{CE}}{V_A}) I_s \{ exp(\frac{qV_{BE}}{kT}) - 1 \} + I_{CBO}$$

のように、エバース・モルの式におけるコレクタ電流を変更することにより対応している。これによって電流増幅率 (*h_{FE}*) は、

$$\frac{\alpha_F(1+V_{CE}/V_A)}{1-\alpha_F(1+V_{CE}/V_A)} \approx \frac{\alpha_F}{1-\alpha_F} (1+\frac{1}{1-\alpha_F}V_{CE}/V_A)$$

のように変更を受けるので、エミッタ接地でのコレクタ電流は、アーリー効果の影響をより顕著に 被 ることになる。ちなみに、アーリー効果をコレクタの出力インピーダンスとして評価すれば、

エミッタ接地では、
$$I_C = \frac{\alpha_F}{1 - \alpha_F} (1 + \frac{1}{1 - \alpha_F} V_{CE} / V_A) I_B$$
より、 $Z_o = \frac{(1 - \alpha_F) V_A + V_{CE}}{I_C}$
ベース接地では、 $I_C = \alpha_F (1 + \frac{V_{CE}}{V_A}) I_E$ より、 $Z_o = \frac{V_A + V_{CE}}{I_C}$

を得る。エミッタ接地では、ベース電流を一定とし、ベース接地では、エミッタ電流を一定として、出 カインピーダンスを評価している。これらの式によれば、高い出力インピーダンスを要する場合には、 ベース接地を用いるという基準のほかに、*I_C*を低電流に維持するという方策も有り得ることが分かる。 接地方式の詳細については、以下の項を参照のこと。

交流特性(ベース接地)

バイポーラトランジスタの小信号等価回路を議論するためには、ベース接地回路から始めるのが簡 便である。ベース接地とは、エミッタを入力とし、コレクタを出力とするとともに、ベースを定電位 に保つようなトランジスタの使用方法をいう。

左図は、バイポーラ・トランジスタのベース接地 T 型等価回路である。 i_e 、 i_c は、それぞれ、エミッ タ電流、コレクタ電流を表しており、トランジスタ の内部へ向かう方向を電流の正の向きと定義してい る。 r_e は、エミッタ外部抵抗と、ダイオード特性を 線形化した $kT/(qi_e)$ の合計を表している。 r_b は、 ベース抵抗、 r_c は、コレクタ抵抗を表している。通 常 $r_c \gg r_b, r_e$ が成り立つ。

具体的には、 r_c は、数100 kΩから数 MΩであり、 r_e 、 r_b については、数10Ωであると思ってよい。 αは、エミッタからコレクタへの電流伝達率であって、1以下ではあるが0.99付近の極めて1に近い 値をとるものである。

左図は、バイポーラ・トランジスタの小信号等価回 路を、ベース接地のHパラメータで示している。各 パラメータは、ベース接地であることを明示するた めに、*h_{ib}、h_{rb}、h_{fb}、h_{ob}、のように表示するの が習慣である。エミッタ側を第一のポート、コレク タ側を第二のポートと定義する。*

ベース接地のHパラメータを、T型等価回路のパラメータで表すには次の手順に依れば良い。すなわち、先ず、コレクタを接地して V₂ = 0 とすると、Hパラメータの関係式として

$$V_1 = h_{ib}I_1$$
$$I_2 = h_{fb}I_1$$

を得る。ここで、 $v_e = V_1$ 、 $i_c = I_2$ 、 $i_e = I_1$ である。 一方、T型等価回路についても、コレクタを接地して $V_2 = 0$ とすれば、

$$v_e = r_e i_e + \frac{r_c r_b}{r_c + r_b} (1 - \alpha) i_e$$
$$i_c = -\alpha i_e - \frac{r_b}{r_c + r_b} (1 - \alpha) i_e$$

を得るから、両者を比較することにより、

$$h_{ib} = r_e + \frac{r_c r_b}{r_c + r_b} (1 - \alpha)$$

$$h_{fb} = -\frac{\alpha r_c + r_b}{r_c + r_b}$$

を得る。

 $r_c \gg r_b, r_e$ の近似のもとでは、 h_{ib} については、 $r_e + r_b(1 - \alpha)$ となって、ベース抵抗の入力インピー ダンスに対する影響は、 $(1 - \alpha)$ の因子の分だけ抑圧されていることが分かる。この効果には、 α が 関与しているから、コレクタ側に電流が流れることによって生ずるものであることに注意する必要が ある。ちなみに、対応するZパラメータの Z_{11} 成分は、 $r_e + r_b$ であって、 $(1 - \alpha)$ の因子は現われな い¹⁸。 Z_{11} は、出力開放(コレクタに電流が流れない)で測定される入力インピーダンスを表している からである。

 h_{fb} については、同じ近似で、 $-\alpha$ となり、T形等価回路における抵抗の値には感度が低いことが分かる。

次に、エミッタ端子を開放して、 $I_1 = 0$ とする。Hパラメータの関係式としては、

$$V_1 = h_{rb}V_2$$
$$I_2 = h_{ob}V_2$$

を得る。ここで、 $v_c = V_2$ である。

一方、T型等価回路の方では、*i*e=0であるから、回路網は、抵抗のみの構成となる。そこで、

$$v_e = \frac{r_b}{r_c + r_b} v_c$$
$$i_c = \frac{v_c}{r_c + r_b}$$

を得るから、両者を比較して、

$$h_{rb} = \frac{r_b}{r_c + r_b}$$
$$h_{ob} = \frac{1}{r_c + r_b}$$

を得る。演算増幅器の等価回路の取扱いでは、 h_r 成分はゼロとしており、「単方向性」を確保するようになっていたが、バイポーラトランジスタでは、もはや、「単方向性」は維持されない。しかし、 $r_c \gg r_b$ であるから、この近似の限りにおいて、「単方向性」があると言うこともできる。また、 h_{ob} は、ほとんど r_c によって支配されていることがわかる。

結局、ベース接地のHパラメータ (H_b) は、

$$H_{b} = \begin{pmatrix} r_{e} + \frac{r_{c}r_{b}}{r_{c} + r_{b}}(1 - \alpha) & \frac{r_{b}}{r_{c} + r_{b}} \\ -\frac{\alpha r_{c} + r_{b}}{r_{c} + r_{b}} & \frac{1}{r_{c} + r_{b}} \end{pmatrix}$$

¹⁸参考のために、Zパラメータの全体を示しておくと、

$$Z = \begin{pmatrix} r_b + r_e & r_b \\ \alpha r_c + r_b & r_b + r_c \end{pmatrix}$$

である。

と表すことができることが分かった。

なお、ベース接地のバイポーラトランジスタは、入力インピーダンスが低く、出力インピーダンス が高いことから、演算増幅器の類型でいえば、電流入力・電流出力の増幅器に対応していることが分 かる。

負荷に対する依存性について調べるために、信号源 抵抗 R_s を有する電圧源 V_s を入力部に接続し、信 号源抵抗 R_L を有する電流源 I_L を出力部に用意す る。電流増幅率は、 $h_{fb} \approx -1$ であっても、コレク タの出力インピーダンスが高いことを利用して高抵 抗の出力負荷をとりつけることにより、電流・電圧 増幅を達成することができることを示そうと思う。

エミッタ端での電圧は、 R_s による電圧降下を考慮して、 $V_s - R_s I_1$ であり、コレクタ端での電流は、 R_L に分流される電流を考慮して、 $I_L - \frac{V_2}{R_L}$ となるので、

$$\begin{pmatrix} V_s - R_s I_1 \\ I_L - \frac{V_2}{R_L} \end{pmatrix} = H_b \begin{pmatrix} I_1 \\ V_2 \end{pmatrix}$$
$$\begin{pmatrix} V_s \\ I_L \end{pmatrix} - \begin{pmatrix} R_s & 0 \\ 0 & 1/R_L \end{pmatrix} \begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = H_b \begin{pmatrix} I_1 \\ V_2 \end{pmatrix}$$

が成り立つ。したがって、

$$\begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = \{ \begin{pmatrix} R_s & 0 \\ 0 & 1/R_L \end{pmatrix} + H_b \}^{-1} \begin{pmatrix} V_s \\ I_L \end{pmatrix}$$

のように整理することができる。

右辺行列部は、

$$\frac{1}{(R_s + h_i)(h_o + 1/R_L) - h_r h_f} \begin{pmatrix} h_o + 1/R_L & -h_r \\ -h_f & R_s + h_i \end{pmatrix}$$

となる。ここで、 $h_o R_L \ll 1$ 、及び、 $h_r \approx 0$ の近似を採ると、上記マトリックスは、

$$\begin{pmatrix} \frac{1}{R_s + h_i} & -\frac{h_r R_L}{R_s + h_i} \\ -\frac{R_L h_f}{R_s + h_i} & R_L \| (1/h_o) \end{pmatrix}$$

のように簡略化することができる。

(1,1) 成分の分母は、信号源の抵抗と正味の入力インピーダンスの合計として理解できる。(1,2) 成 分は、電圧帰還率を電流帰還率に換算したものとして理解できる。(2,1) 成分は、電圧利得であり、 R_L に比例しているのが特徴である。 $R_L > R_s + h_i$ とすることにより、電圧増幅が達成できるようになっ ている。なお、入力信号を電流換算すれば、 $I_s = V_s/R_s$ であるから、 $R_s \gg h_i$ の近似で、トランス インピーダンス・ゲインは、 R_L である。(2,2) 成分は、出力負荷 R_L と、正味の出力インピーダンス 1/ h_o の並列抵抗として理解することができる。

最後に、高周波での振る舞いに言及しておこうと思う。高周波におけるトランジスタの振る舞いは、 ベース・エミッタ接合、および、ベース・コレクタ接合に付随する容量によって支配されている。

ベース・コレクタ接合における容量 *C_c*は、ダイオードの逆バイアス状態における空乏層容量である。一方、ベース・エミッタ接合は順方向にバイアスされているため同様に考えることはできない。そこで、蓄積時間 τ₀ を導入して、ベース・エミッタ接合に蓄積されて電荷は、*i_eτ₀*で表せるものとする。

一方、ベースエミッタ間の電位差は、 $(1 - \alpha)r_b \approx 0$ とする近似で、 $i_e r_e$ と表すことができるので、結局 $C_e = \tau_0/r_e$ とすることができる。

高周波等価回路においては、 C_e は、エミッタ抵抗 r_e に並列、 C_e は、コレクタ抵抗 r_c に並列に配置 される。また、 α は、 $\frac{\alpha_0}{1+s\tau_0}$ のように修正される。 C_e に分流される分だけ r_e に流れる電流が少なく なるからである。なお、この様に、 α を定義し直すことによって、もとのように、 i_e によって、コレク タ側の電流源が制御されているようにすることができる。 α が帯域制限を受けることは、電圧増幅率 に直接影響する。しかし、それ以上の帯域制限は、顕著でないところにベース接地回路の特徴がある。 ただし、 C_c は、出力部において R_L 、 $1/h_o$ と結合して時定数を生じ、周波数帯域を制限する。した

がって、電圧利得と、周波数帯域幅の間には、トレードオフが生じることになる。

<u>交流特性(エミッタ接地)</u>

次に、ベース接地のHパラメータを基準として、エミッタ接地のHパラメータ、及び、コレクタ接 地のHパラメータを求めて、それぞれの特徴と抽出しようと思う。

エミッタ接地とは、ベースを入力とし、コレクタを出力とするとともに、エミッタを定電位に保つ ような、トランジスタの使用方法をいう。したがって、ベースを第一のポートとし、コレクタを第二 のポートとしてHパラメータ (*H_e*) が定義される。そこで、ベース接地のHパラメータ (*H_b*) との対応 をとるためにベース接地の入出力電圧・電流を *H_e* によって関係づけると、

$$\begin{pmatrix} -v_e \\ i_c \end{pmatrix} = H_e \begin{pmatrix} -(i_e + i_c) \\ v_c - v_e \end{pmatrix}$$

となる。電圧については、エミッタが接地電位になるように、ベース電位とコレクタ電位を v_e だけ平 行移動させれば良い。ベース接地回路においては、ベース電流は、エミッタ電流とコレクタ電流の合 計であって、素子から外に流れ出すように定義されていた。しかし、エミッタ接地回路では、ベース 電流は、素子に向かう方向が正の向きであることに注意する。上記関係式は、

$$E_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$E_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

を導入することにより、

$$E_1\begin{pmatrix}v_e\\i_c\end{pmatrix} = H_e\{-E_2\begin{pmatrix}v_e\\i_c\end{pmatrix} + E_1\begin{pmatrix}i_e\\v_c\end{pmatrix}\}$$

のように整理することができるから、 $\binom{v_e}{i_c} = H_b \binom{i_e}{v_c}$ を上式に代入して、

$$H_{e} = E_{1}H_{b}(E_{1} - E_{2}H_{b})^{-1} = \begin{pmatrix} r_{b} + \frac{r_{e}r_{c}}{(1-\alpha)r_{c} + r_{e}} & \frac{r_{e}}{(1-\alpha)r_{c} + r_{e}} \\ \frac{\alpha r_{c} - r_{e}}{(1-\alpha)r_{c} + r_{e}} & \frac{1}{(1-\alpha)r_{c} + r_{e}} \end{pmatrix}$$

を得る。さらに、 $r_c \gg r_e h_{fe} \gg r_b$ の近似で、

$$H_e = \begin{pmatrix} \frac{r_e}{1-\alpha} & \frac{r_e}{(1-\alpha)r_c} \\ \frac{\alpha}{1-\alpha} & \frac{1}{(1-\alpha)r_c} \end{pmatrix}$$

となる。 h_i 成分は、ベース接地の場合とは逆に、 $1/(1 - \alpha)$ の因子によって高抵抗となっている。 h_r 成分についても同様の効果が働くため、「単方向」素子の近似はベース接地の場合に比べて後退してい

る。 h_f 成分は、抵抗パラメータへの感度は低く、ほとんど、 α のみで記述できる。 $\alpha/(1-\alpha)$ は、 β 、 又は、 h_{fe} として、慣用されているパラメータである。 h_o 成分は、ベース接地の場合と比べて $\frac{1}{1-\alpha}$ の因子だけ変動を受けている¹⁹。これは、コレクタの出力抵抗 r_c が実効的に $1-\alpha$ の因子だけ減少していることを意味する。この効果によって、コレクタ負荷として高抵抗を用いたとしても、コレクタ出力抵抗が低下しているため有効に働かないこともありうることに注意を要する。

次に、入出力に負荷をつけた場合の特性について議論する。

左図において、電圧 V_s は入力抵抗 $R_s + h_i$ によって、電流に変換されたのち、 h_{fe} だけ増幅され、最後に、コレクタ側の抵抗 $(1/h_o) \parallel R_L$ によって電圧 に変換される。したがって、電圧利得は、

$$\frac{h_{fe}\{(1/h_o) \| R_L\}}{R_s + h_i}$$

のようになることは見当がつく。

エミッタ接地回路においても、限定的ではあるが $h_o R_L \ll 1$ 、及び、 $h_r \approx 0$ の近似が妥当であるとして議論を進める。すると、 (I_1, V_2) と (V_s, I_L) を結び付けるマトリクスは、ベース接地の議論と全く同様にして、

$$\begin{pmatrix} \frac{1}{R_s+h_i} & -\frac{h_r R_L}{R_s+h_i} \\ -\frac{h_f \{R_L \| (1/h_o)\}}{R_s+h_i} & R_L \| (1/h_o) \end{pmatrix}$$

となる。

(1,1) 成分の分母は、信号源の抵抗と正味の入力インピーダンス h_i を合計したものである。(1,2) は、 電圧帰還率 h_r を電流帰還率に換算したものであって R_L に直接比例するので、電圧利得とのトレード オフが生ずる。(2,1) は、電圧利得であって、 $h_f \ge R_L || (1/h_o)$ に比例している。分母は、(1,1) 成分の 分母と同一であるが、この因子は、入力に印加された電圧を電流に変換するために要求されるもので ある。また、負の符号は、反転増幅であることに対応している。(2,2) は、出力インピーダンスを表し ており、 R_L と正味の出力インピーダンスである $1/h_o$ の並列接続として表すことができる。

高周波では、 α の帯域制限の影響を受けて、 h_{fe} は、

$$h_{fe} = \frac{\alpha}{1-\alpha}$$
$$= \frac{\alpha_0}{1-\alpha_0} \frac{1}{1+s\tau_0/(1-\alpha_0)}$$

となるので、周波数帯域は、ベース接地の場合との比較で、 $1 - \alpha_0$ の因子の分だけ減少することがわかる。この現象を称して、「 β カットオフは、 α カットオフの $1/\beta$ である。」と言い習わしている。これは、「利得・帯域幅が一定に保たれる」という法則の一つの現われと言える。

¹⁹ 直流特性と交流特性の差はあるものの、アーリーー効果の議論に現われた現象と起源を同一にするものである。

次に、*C_c*の周波数特性上の効果について述べる。*h_r*をゼロとする近似を撤回すると²⁰、入力イン ピーダンスは、

$$R_s + h_i - h_r h_f R_L \approx R_s + r_b + \frac{h_i - r_b}{1 + \frac{h_r h_f R_L}{h_i - r_b}}$$

のように近似することができる。

 C_c は r_c に並列に挿入されているので、一定以上の高周波領域では、 $r_c \gg 1/(sC_c)$ がなりたち、 $r_c \| \frac{1}{sC_c} \ge \frac{1}{sC_c}$ で近似することが妥当性を得る。この近似のもとで、

$$\frac{h_i - r_b}{1 + \frac{h_r h_f R_L}{h_i - r_b}} = \frac{r_e}{\{(1 - \alpha) + sC_c r_e\}(1 + sC_c h_f R_L)}$$
$$\approx \frac{1}{sC_c(1 + R_L/r_e)}$$

となる。ここで、分母を展開した後に、 $\alpha \rightarrow 1$ 、及び、 $O(s^2)$ を無視する近似を行った。

すると、コレクタ容量は、エミッタ接地トランジスタの電圧増幅率 R_L/r_e に相当する分だけ大きな 値として見えることが分かる。この効果を「ミラー効果」という²¹。既出の演算増幅器の応用例には、 荷電増幅器という形式が示してあった。その形式における入力インピーダンスは、 $\frac{1}{sC_f\{1+A(s)\}}$ で あった。この効果がまさに「ミラー効果」である。

交流特性(コレクタ接地)

コレクタ接地とは、ベースを入力とし、エミッタを出力とするとともに、コレクタを定電位に保つ ような、トランジスタの使用方法をいう。したがって、ベースを第一のポートとし、エミッタを第二 のポートとしてHパラメータ(*H_c*)が定義される。そこで、ベース接地のHパラメータ(*H_b*)との対応 をとるためにベース接地の入出力電圧・電流を*H_c*によって関係づけると、

$$\begin{pmatrix} -v_c \\ i_e \end{pmatrix} = H_c \begin{pmatrix} -(i_c + i_e) \\ v_e - v_c \end{pmatrix}$$

となる。上記関係式は、

$$E_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

を導入することにより、

$$E_3\begin{pmatrix}i_e\\v_c\end{pmatrix} = H_c\{-\begin{pmatrix}i_e\\v_c\end{pmatrix} + E_3\begin{pmatrix}v_e\\i_c\end{pmatrix}\}$$

のように整理することができるから、 $\begin{pmatrix} v_e \\ i_c \end{pmatrix} = H_b \begin{pmatrix} i_e \\ v_c \end{pmatrix}$ を代入して、結局、

$$H_{c} = E_{3}(-1 + E_{3}H_{b})^{-1}$$

$$= \begin{pmatrix} r_{b} + \frac{r_{e}r_{c}}{r_{e} + (1 - \alpha)r_{c}} & \frac{r_{c}(1 - \alpha)}{r_{e} + (1 - \alpha)r_{c}} \\ -\frac{r_{c}}{r_{e} + (1 - \alpha)r_{c}} & \frac{1}{r_{e} + (1 - \alpha)r_{c}} \end{pmatrix}$$

を得る。さらに、 $r_c \gg r_e h_{fe} \gg r_b$ の近似で、

$$H_{c} = \begin{pmatrix} \frac{r_{e}}{1-\alpha} & 1\\ -\frac{1}{1-\alpha} & \frac{1}{(1-\alpha)r_{c}} \end{pmatrix}$$

 20 もっとも、 $h_r \approx 0$ 、 $h_o R_L \ll 1$ の近似については、これを維持します。

²¹Miller effect である。「電流 mirror」と混同しないように。

となる。 h_i は、エミッタ接地と同様の値で比較的高い入力インピーダンスとなってる。 h_r は、ほとんど1であって、これは、出力の電圧が、そのまま、入力にはねかえることを意味する。 h_f は、1- α の逆数であるから、比較的大きな値となる。コレクタ接地回路とは、いわゆるエミッタ・フォロワーといわれている回路であって、本来ベース接地のエミッタ抵抗程度の低い出力インピーダンスが予想されるところ、上記パラメータではエミッタ接地のコレクタ抵抗と同じような高い値となっている。これは、実は、ハイブリッドパラメータの h_o は、入力開放で定義されていることと関係している。つまり、ベースが接地されていなことが問題の所在である。

そこで、入出力負荷をつけて、その特性を検討してみることにする。

左図のように、ベースを入力端子として、信号源抵抗 R_sの電圧源 V_sを入力部に用意する。また、エ ミッタを出力端子として、信号源抵抗 R_Lの電流源 I_Lを用意する。トランジスタの端子電圧・電流は、 H_cを用いて、

$$\begin{pmatrix} I_L - \frac{V_2}{R_L} \\ V_s - R_s I_1 \end{pmatrix} = H_c \begin{pmatrix} V_2 \\ I_1 \end{pmatrix}$$

のように関連している。

そこで、

のように整理することができる。

コレクタ接地回路においても、限定的であるが $h_o R_L \ll 1$ とし、さらに、 $h_r \approx 1$ の近似をおこなうと、

$$\begin{pmatrix} I_1\\V_2 \end{pmatrix} = \begin{pmatrix} \frac{1-\alpha}{(R_s+h_i)(1-\alpha)+R_L} & -\frac{R_L(1-\alpha)}{(R_s+h_i)(1-\alpha)+R_L}\\ \frac{R_L}{(R_s+h_i)(1-\alpha)+R_L} & R_L \|\{(R_s+h_i)(1-\alpha)\} \end{pmatrix} \begin{pmatrix} V_s\\I_L \end{pmatrix}$$

を得る。

(1,1) 成分は、信号源の抵抗と正味の入力インピーダンスを合計したものの逆数であって、出力負荷を 入力からみると、 $\frac{1}{1-\alpha}$ 倍されて、高抵抗として見えることに特徴がある。(1,2) 成分は、電流での帰 還率を表しているが、 $h_r \approx 1$ であったものが、 $1-\alpha$ により抑圧されているのが分かる。(2,1) 成分は、 電圧増幅率を表すものであるが、これも $\alpha \approx 1$ の効果で、ほとんど1となるところに特徴がある。エ ミッタの電圧値がベースの電圧値に追従するわけであって、これが、エミッタ・フォロワー回路の名称の所以である。(2,2) 成分は、負荷抵抗 R_L と、正味の出力インピーダンスの並列接続として理解す ることができる。ベース側の抵抗 $R_s + h_i$ をエミッタからみると、 $1-\alpha$ 倍に見えることになる。した がって、エミッタ・フォロワーの出力インピーダンスは、 $1/h_{oc}$ が高い値を示すのにも拘らず、低い値 に維持されることが確認された。エミッタ側の抵抗をベースから見ると高抵抗に見え、ベース側の抵 抗をエミッタから見ると低く見えるということになる。

高周波特性において C_c は r_b と r_e の接続点から接地されることになるので、ベース電流を接地に対して分流する効果を生ずる。したがって、 r_e に流れる電流が、近似的に $\frac{1}{1+sr_bC_c}$ の因子によって影響を受けることになる。しかし、 r_b は、一般に 20 ~ 30 Ω 程度であるから、周波数帯域幅は、これによって大幅に制限されることはない。

$$\frac{R_L}{(R_s + r_b)(1 - \alpha) + r_e + R_L}$$

のように書けるから、 $\alpha \approx 1/(1 + s\tau_0)$ を代入して

$$\frac{R_L}{r_e + R_L} \frac{1 + s\tau_0}{1 + s\tau_0 \{1 + (R_s + r_b)/(r_e + R_L)\}}$$

となる。 R_s が R_L にくらべて小さな値であれば、ゼロとポールが相殺するために、周波数帯域は、これによって大幅に制限されることはないが、一方、 R_s が大きな値である場合には、周波数帯域幅は、

 $\frac{1}{2\pi\tau_0\{1+(R_s+r_b)/(r_e+R_L)\}}$ によって制限されることになる。

コレクタ接地回路には、高周波特性としてもう一つの顕著な特徴がある。それは、出力インピーダ ンスの振る舞いに現われる。

 $r_e \ll (1-\alpha)r_c$ 近似のもとに、出力インピーダンスは、

$$Z_o(s) = (R_s + r_b + \frac{r_e}{1 - \alpha})(1 - \alpha)$$

と書けるから、 α の周波数依存性に加えて、 r_e には $C_e = \tau_0/r_e$ が並列に付加されていることを考慮して、

$$Z_o(s) = (R_s + r_b)\frac{s\tau_0}{1 + s\tau_0} + \frac{r_e}{1 + s\tau_0}$$

を得る。

ここで、 $s = i\omega$ を考慮して、虚数成分を取出すと、

$$Im\{Z_o(s)\} = (R_s + r_b - r_e)\frac{\omega\tau_0}{1 + \omega^2\tau_o^2}$$

となる。したがって、エミッタ電流が小さい場合、すなわち、 $r_e > R_s + r_b$ のときには容量性にみえるものの、エミッタ電流を増加させて r_e を減少させると、誘導性に見えるという特徴がある。この特徴は、容量性負荷をエミッタ・フォロワーで駆動する場合に異常発振の問題²²を生ずる原因となることがある。なお、容量性、又は、誘導性と言うときは、単にインピーダンスの虚数成分の符号に着目したものであって、周波数依存性については、考慮していない事に注意すること。

2.3.2 BJT の組合回路

複数のトランジスタを組合わせると、単体のトランジスタの機能を改善することができるばかりで なく、単体のトランジスタでは実現することができなかった、新たな機能を実現することができる。

そこで、定電流源としての電流ミラー回路、トランスインピーダンス増幅器、差動増幅器等について議論することにする。これらの回路は、原則的には、BJTのみならず FET を用いても実現できるものであるが、ここでは、BJTの回路に限定して議論を進める。

 $^{2^{2}}$ エミッタフォロワーのベースに 100 Ω 程度の抵抗を入れておけば、 $Re(Z_{o})$ を増大させることになるので、上記問題を回避する対策とすることができる。一方、 $Im(Z_{o})$ については、より低電流のうちに誘導性となることを意味するのだが、最終的に安定性を維持できれば良い。

左図は、電流ミラー回路の基本型である。 $Q_1 \ge Q_2$ は、ベース電位を共有しているため、両者の特性が そろっているという限度において、両者のエミッタ 電流 (I_E) は一致している。したがって、抵抗 R には、

$$\frac{V_{CC} - V_{BE}}{R} = \alpha_F I_E + 2(1 - \alpha_F)I_E$$

の電流が流れる。右辺第二項は、ベース電流による ものである。

そこで、Q2 のコレクタ電流は、

$$\alpha_F I_E = \frac{1}{1 + 2/h_{FE}} I_{ref}$$

となる。ここで、 I_{ref} は、抵抗 R に流れる電流(基準電流)をあらわしている。また、 $h_{FE} = \frac{\alpha_F}{1 - \alpha_F}$ を用いた。なお、電流増幅率について、交流特性の h_{fe} と区別するために、 h_{FE} によって直流特性の 電流増幅率を表すことが一般的である。

このように、 Q_2 のコレクタ電流は、 $h_{FE} \to \infty$ の極限においては、基準電流に一致する。しかし、実際には、有限の h_{FE} の影響の他に、アーリー効果によって、 Q_2 のコレクタ電流は、基準電流からの 誤差を生じてしまう。

アーリー効果の影響を低減する一つの方策は、直列 帰還を用いることである。具体的には、左図に示す ように、Q₁ と Q₂ のエミッタに同一の定数の抵抗 を付加することによって、アーリー効果を抑圧する ことができる。実際、演算増幅器の節で議論した直 列・直列帰還の考え方で説明を試みる。

*Q*₂ にエミッタ接地のHパラメータを適用し、このトランジスタに*R*₂ によって直列・直列帰還がかけられているというように考える。そうすると、演算増幅器における直列・直列帰還の解析手法を参照して、

$$Z_a = \begin{pmatrix} h_{ie} - \frac{h_{re}h_{fe}}{h_{oe}} & \frac{h_{re}}{h_{oe}} \\ -\frac{h_{fe}}{h_{oe}} & \frac{1}{h_{oe}} \end{pmatrix}$$
$$Z_f = \begin{pmatrix} R_2 & R_2 \\ R_2 & R_2 \end{pmatrix}$$
$$Y = (Z_a + Z_f)^{-1}$$

を求めれば良いことになる。

Y パラメータに変換するのは、*Z*₂₂ は、入力開放の出力インピーダンスを与えるのに対して、*Y*₂₂ は、入力接地の出力インピーダンスを与えるからである。また、*Q*₂ のベースは、ダイオード接続され た*Q*₁ のベース・コレクタに接続されており、近似的に接地として取り扱うのが合理的だからである。 具体的に出力インピーダンス *Z*₀ を求めると、

$$Z_{o} = \frac{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe} + 1 - h_{re} + h_{fe})R_{E}}{h_{ie}h_{oe} - h_{re}h_{fe} + R_{E}h_{oe}}$$

となる。さらに、Hパラメータ、

$$H_e = \begin{pmatrix} r_b + r_e(1+h_{fe}) & 0\\ h_{fe} & \frac{1+h_{fe}}{h_{oe}} \end{pmatrix}$$

を代入し、 $r_b \ll r_e h_{fe} \ll r_c$ の近似を行うと、

$$Z_o = \frac{r_c(r_e + R_2)}{r_e(h_{FE} + 1) + R_2}$$

を得る。 $R_2 \rightarrow 0$ の極限で、 $r_c(1 - \alpha_F)$ 、 $R_2 \rightarrow \infty$ の極限で、 r_c でとなるから、合理的な解を与えていることが分かる。

積極的に、 $R_1 \ge R_2$ の比率を変更することにより、 $Q_1 \ge Q_2$ のコレクタ電流 ($\alpha_F I_{E1} \ge \alpha_F I_{E2}$) 比 を調整することができる²³。それぞれのトランジスタのエミッタ電流は、

$$\begin{split} I_{E1} &= I_{s1} exp(\frac{V_{CC} - I_{E1}(R_3 + R_1)}{kT/q}) \\ I_{E2} &= I_{s2} exp(\frac{V_{CC} - I_{E1}R_3 - I_{E2}R_2}{kT/q}) \end{split}$$

である。ただし、 $I_{s1}, I_{s2} \ll I_{E1}, I_{E2}$ の近似を行った。第一式と第二式の比をとってから、さらに対数をとると、

$$I_{E2} = -\frac{kT/q}{R_2} ln(\frac{I_{E1}I_{s2}}{I_{E2}I_{s1}}) + \frac{R_1}{R_2}I_{E1}$$

を得る。

第一項を無視する近似において、 Q_1 のエミッタ電流と Q_2 のエミッタ電流は、 $R_1 \ge R_2$ の逆比になることが分かる。第一項は、しかしながら微小電流で駆動する回路においては、無視できない寄与となる場合が有り得る。すなわち、 $R_2 = 1 k\Omega$ 、電流比が2であるとすると、第一項は、 $I_{s1} = I_{s2}$ の下で、20 μA 程度になるから、100 μA で駆動している回路系にとっては、設計上の誤差が大きくなることに注意する必要がある。電流比の分だけ、附属するエミッタ抵抗を含めてトランジスタを並列に並べるようにすればこのような不具合を避けることができる。トランジスタを並列接続することは、 I_s 比を変更したことに相当するため、 I_E の比の変更分と相殺し、第一項の寄与を無視することができるからである。

つぎに、有限の h_{FE} の効果を改善する回路方式を示す。

 $^{^{23}}$ 特に $R_1 = 0$ とした回路方式を Widlar の電流源という

左図の電流ミラー回路では、第三のトランジスタ Q_3 を導入して、 Q_1 のコレクタにエミッタ・フォロ ワーを取付けて、 $Q_1 \ge Q_2$ のベースに要求される電 流を Q_3 のエミッタから供給するようになっている。 $Q_1 \ge Q_2$ に流れるベース電流の合計 $2(1 - \alpha_F)I_E$ は、 Q_3 のベースでは、 $2(1 - \alpha_F)^2I_E$ に減少するの で、 R_3 に流れる電流は、 $R_1, R_2 \ll R_3$ の条件のも とで、

$$\frac{V_{CC} - 2V_{BE}}{R_3} = \alpha_F I_E + 2(1 - \alpha_F)^2 I_E$$

である。

そこで、 Q_2 のコレクタ電流 I_C は、

$$\alpha_F I_E = \frac{1}{1 + 2/\{h_{FE}(1 + h_{FE})\}} I_{ref}$$

となる。ただし、 $I_{ref} = (V_{CC} - 2V_{BE})/R_3$ である。電流ミラーの基本型との比較で、 I_{ref} に対する Q_2 のコレクタ電流の近似度が改善されていることが分かる。

左図は、Wilson のカレントミラーと呼ばれる回路 方式を示している。 $Q_3 \approx Q_2$ のカスコードトラン ジスタとして配置した電流ミラーである。 $Q_1 \ge Q_2$ に同じだけエミッタ電流 I_E が流れているとすると、 Q_3 のエミッタ電流は、

$$\alpha_F I_E + 2(1 - \alpha_F)I_E = (2 - \alpha_F)I_E$$

である。

そこで、 R_3 に流れる電流について、 $R_1, R_2 \ll R_3$ の近似のもとで、

$$\frac{V_{CC} - 2V_{BE}}{R_3} = \{(1 - \alpha_F)(2 - \alpha_F) + \alpha_F\}I_E$$

が成り立ち、さらに、Q3のコレクタ電流は、

$$\alpha_F (2 - \alpha_F) I_E = \frac{h_{FE} (h_{FE} + 2)}{(h_{FE} + 1)^2 + 1} I_{ref}$$

となる。ただし、 $I_{ref}=rac{V_{CC}-2V_{BE}}{R_3}$ である。

この回路方式は、*Q*₃を中心に据えた、並列・直列帰還を構成していると考えることができる。すなわち、*Q*₁と*Q*₂とによって、*Q*₃の出力ポートに流れる電流を入力ポートに回送しているのである。

したがって、 $R_1 = R_2 = 0$ としてGパラメータ (G_f) で電流の帰還を表すと、

$$G_f = \begin{pmatrix} 0 & \frac{1}{1+2/h_{FE}} \\ 0 & 0 \end{pmatrix}$$

となる。これは、基本型の電流ミラーにおいて、 $Q_1 \ge Q_2$ の役割入れかえることによって導くことができる。

 G_f と、エミッタ接地のGパラメータ (G_e) (Hパラメータの逆行列)の和をとった上で、再びHパラメータにもどすと、

$$(G_e + G_f)^{-1} = \begin{pmatrix} \frac{h_i(h_f + 2)}{(h_f + 1)^2 + 1} & h_r - \frac{h_i h_o h_f}{(h_f + 1)^2 + 1} \\ \frac{h_f(h_f + 2)}{(h_f + 1)^2 + 1} & \frac{h_o(h_f + 2)}{(h_f + 1)^2 + 1} \end{pmatrix}$$

を得る。エミッタ接地の h_o 成分は、 $\frac{1}{(1-\alpha_F)r_c}$ であったが、 $Q_1 \ge Q_2$ による、並列・直列帰還によって、ベース接地相当の出力インピーダンスに回復していることが分かる。さらに、 h_i 成分、及び、 h_r 成分が低下すること、 h_f 成分が1に漸近するなど、理想特性へ近づいていることが分かる。

電流ミラーの議論を終了して、トランスインピーダンス増幅器についての議論に移る。

Vcc Rc Q2 Vout Vee Rf Re 左図は、シングル・エンド形のトランス・インピー ダンス増幅器の典型である。 $Q_1 \circ r_c$ が十分大きく て、かつ、 Q_1 、 $Q_2 \circ h_{FE}$ が十分高いという仮定 のもとで、 $Q_1 \circ r_c$ のコレクタ電流は、

$$\frac{V_{CC} - 2V_{BE}}{R_c} = \alpha_F I_E$$

となる。一方、 $r_e = \frac{kT/q}{I_E}$ であるから、開ループの電圧利得として、

$$\frac{R_c}{r_e} = \frac{V_{CC} - 2V_{BE}}{\alpha_F kT/q}$$

を得る。 したがって、開ループの利得 は、専ら、 電源電圧 *V_{CC}* によって制御することができるとい う特徴があることが分かる。

しかし、*Q*₁ と *Q*₂ についてのこれらの仮定は、通常簡単に崩れてしまう。このとき、*Q*₁ の出力イン ピーダンスの低下、および、*Q*₂ のベースから見込んだ負荷インピーダンスによって、開ループ利得は、

$$\frac{1}{r_e} \{ R_c \| \frac{r_o}{1 + h_{fe}} \| (1 + h_{fe}) R_e \}$$

のように変更を受ける。この欠点を回避するために、 Q_1 については、カスコード接続を、 Q_2 については、ダーリントン接続を用いることができる。

そこで、 $Q_2 \geq Q_3$ により、出力部のエミッタ・フォ ロワーをダーリントン接続としたトランスインピー ダンス増幅器について議論する。左図の回路方式に よれば、 Q_2 のエミッタ電流は、 Q_3 のベース電流を 無視する近似では、電源電圧に依存せずに $\frac{V_{BE}}{R_a}$ で ある。また、 R_b は、発振止めとして設けたもので ある。

 $Q_2 \ge Q_3$ のコレクタ電流の合計を i_c とすると、

$$i_c = h_{f2}i_{b2} + h_{f3}i_{b3}$$

である。一方、 R_a の両端の電位差を、 R_a を流れる電流と、 Q_3 のベース・エミッタ間を流れる電流と で見積もることにより

$$R_a\{i_{b2}(h_{f2}+1)-i_{b3}\} = (R_b+h_{i3})i_{b3}$$

を得る

これらの二つの関係式から、*i*b3 を消去すると、

$$\frac{i_c}{i_{b2}} = h_{f2} + \frac{h_{f3}(h_{f2}+1)R_a}{R_b + R_a + h_{i3}}$$

となるから、 $R_a \gg R_b + h_{i3}$ の近似で電流増幅率は、

$$h_{f2} + h_{f3} + h_{f3}h_{f2} \approx h_{f3}h_{f2}$$

となる。結局、電流増幅率は、ほぼ、各々トランジスタの電流増幅率の積に等しいことが分かる。したがって、出力部に低インピーダンスの負荷が接続された場合においても、実効的に電流増幅率が増大しているので*Q*₂のベースから見たインピーダンスを*R_c*との比較において十分大きく維持することが可能となる。

左図は、エミッタ接地のQ₁のコレクタに、ベース 接地のQ₃のエミッタを接続したカスコード方式を 用いたトランスインピーダンス増幅器である。カス コード接続は、二つの点において増幅器の性能を改 善する。第一の改善は、Q₁のベース・コレクタ容量 に付随したミラー効果の低減である。Q₁のコレク タ負荷は、実質的にQ₃のエミッタ抵抗であるから、 Q₃を取り払った場合の負荷である R_cに比べて大 幅に低減されることになる。第二の改善は、Q₃に よる出力インピーダンスの増大による増幅器のオー プンループ利得の改善である。Q₃を取り払ったQ₁ のコレクタインピーダンスは、R_cと容易に競合し 得る程度のものであったのが、Q₃を付加すること によって、h_{fe} 倍改善されることになる。 実際、Fパラメータを用いることにより、カスコードの効果を考察する。基礎となるHパラメータは、 Q_3 について、 r_i

$$H_b = \begin{pmatrix} r_e & \frac{r_b}{r_c} \\ -\frac{h_{fe}}{1 + h_{fe}} & \frac{1}{r_c} \end{pmatrix}$$

 Q_1 について、

$$H_{e} = \begin{pmatrix} r_{b} + (1 + h_{fe})r_{e} & \frac{r_{e}(1 + h_{fe})}{r_{c}} \\ h_{fe} & \frac{1 + h_{fe}}{r_{c}} \end{pmatrix}$$

のように近似する。

 Q_1 のFパラメータを F_e とし、 Q_3 のFパラメータを F_b とすると、 Q_1 のベースを第一のポートとし、 Q_3 のコレクタを第二のポートとするFパラメータは、 $F^{ca} = F_e F_b$ となる。これを、再びHパラメータ(H_{ca})にもどすと、

$$H_{ca} = \begin{pmatrix} F_{12}^{ca} / F_{22}^{ca} & det(F^{ca}) / F_{22}^{ca} \\ -1 / F_{22}^{ca} & F_{21}^{ca} / F_{22}^{ca} \end{pmatrix}$$
$$= \begin{pmatrix} r_b + (h_{fe} + 1)r_e & \frac{r_e r_b (h_{fe} + 1)}{r_c \{r_e (h_{fe} + 1) + r_c\}} \\ \frac{r_c h_{fe}^2}{(h_{fe} + 1) \{r_e (h_{fe} + 1) + r_c\}} & \frac{1}{r_c} + \frac{r_b h_{fe}}{r_c \{r_e (h_{fe} + 1) + r_c\}} \end{pmatrix}$$

を得る。さらに $r_e h_{fe} \ll r_c$ の近似のもとに、

$$H_{ca} = \begin{pmatrix} r_b + (h_{fe} + 1)r_e & \frac{r_e r_b (h_{fe} + 1)}{r_c^2} \\ \frac{h_{fe}^2}{h_{fe} + 1} & \frac{1}{r_c} + \frac{r_b h_{fe}}{r_c^2} \end{pmatrix}$$

のように簡略化することができる。*h_i、及び h_f*成分については、エミッタ接地のそれらと変わるところはない。しかし、*h_r*は、低減され、入出力の分離が改善していることが分かる。また、*h_o*成分についても、ほとんどベース接地の出力インピーダンスが確保できていることが分かる。

エミッタノードの電圧を ve とすると、

カスコード接続には、既出のように同種のトラン ジスタを用いたものと、左図の回路例のように異 種のトランジスタを用いたものとがある。後者を 特に、Folded-cascode という。前者のカスコードで は、ダイオード D_1 を用いて、 Q_1 のベースと Q_3 のコレクタとの間の電位差を確保する必要があった が、Folded-cascode ではこれは、不要である。また、 V_{CC} 及び V_{ee} を調整することによって、 Q_1 に流れ る電流と Q_3 に流れる電流を独立に設定することが できるという利点がある。

左図は、 $Q_1 \ge Q_2$ のエミッタを接続した構成であっ て、ベースから信号を入力し、コレクタから出力信 号を取出す回路である。この回路構成は、エミッタ 結合差動増幅器と呼ばれている。先ず、小信号に対 する利得について検討する。小信号利得には、差動 利得と同相利得がある。差動利得は、 $R_{c1} = R_{c2}$ の 条件のもとで、 $\frac{V_{c1} - V_{c2}}{v_{b1} - v_{b2}}$ によって定義される。一 方、同相利得は、二つの入力信号の平均 $\frac{v_{b1} + v_{b2}}{2}$ に対する出力信号の平均値として、 $\frac{V_{c1} + V_{c2}}{v_{b1} + v_{b2}}$ によっ て定義される。一般に、同相利得に対して、差動利 得が十分大きいことが好ましい。

$$\frac{v_e}{R_e} = \frac{v_{b1} - v_e}{h_{ie}} (1 + h_{fe}) + \frac{v_{b2} - v_e}{h_{ie}} (1 + h_{fe})$$

が成り立つから、これを整理して、

$$v_e = \frac{v_{b1} + v_{b2}}{2 + \frac{h_{ie}}{R_e(1 + h_{fe})}}$$

を得る。 そこで、コレクタ電流 I_{c1} 、 I_{c2} について、

$$\begin{split} I_{c1} &= & \alpha_F I_{e1} \\ &= & \frac{h_{fe}}{h_{ie}} \frac{v_{b1} - v_{b2} + \frac{v_{b1}h_{ie}}{R_e(1 + h_{fe})}}{2 + \frac{h_{ie}}{R_e(1 + h_{fe})}} \\ I_{c2} &= & \alpha_F I_{e2} \\ &= & \frac{h_{fe}}{h_{ie}} \frac{v_{b2} - v_{b1} + \frac{v_{b2}h_{ie}}{R_e(1 + h_{fe})}}{2 + \frac{h_{ie}}{R_e(1 + h_{fe})}} \end{split}$$

を得る。

したがって、 $R_{c1} = R_{c2} = R_c$ とおくと

$$V_{c1} - V_{c2} = -\frac{R_c h_{fe}}{h_{ie}} (v_{b1} - v_{b2})$$

$$\approx -\frac{R_c}{r_e} (v_{b1} - v_{b2})$$

$$\frac{V_{c1} + V_{c2}}{2} = -\frac{R_c h_{fe}}{2R_e (1 + h_{fe}) + h_{ie}} \frac{v_{b1} + v_{b2}}{2}$$

$$\approx -\frac{R_c}{2R_e + r_e} \frac{v_{b1} + v_{b2}}{2}$$

を得る。第一の式が、差動利得を与え、第二の式が同相利得を与える。同相利得は、*R_e*を大きくすることによって低減することができるから、*R_e*を電流ミラー等で構成された定電流源に置き換えることが好ましい。

なお、同相利得の差動利得に対する比を同相信号除去比 (CMRR,common-mode rejection ratio) という。

大信号に対しては、エミッタ接合差動増幅器は、いわゆる、電流スィッチとして動作する。それぞれの トランジスタに流れる電流を、*I*_{e1}、*I*_{e2} とおくと、近似的に

$$I_{e1} = I_s exp(\frac{v_{b1} - v_e}{kT/q})$$
$$I_{e2} = I_s exp(\frac{v_{b2} - v_e}{kT/q})$$

が成り立つ。

したがって、

$$\frac{I_{e1}}{I_{e1} + I_{e2}} = \frac{exp(\frac{q\Delta V_{12}}{kT/q})}{exp(\frac{q\Delta V_{12}}{kT/q}) + exp(\frac{q\Delta V_{21}}{kT/q})}$$
$$\frac{I_{e2}}{I_{e1} + I_{e2}} = \frac{exp(\frac{q\Delta V_{21}}{kT/q})}{exp(\frac{q\Delta V_{12}}{kT/q}) + exp(\frac{q\Delta V_{21}}{kT/q})}$$

を得る。ただし、 $\Delta V_{12} = v_{b1} - v_{b2}$ である。この関係から、 $\frac{\Delta V_{12}}{kT/q} \approx 4$ 程度になれば、ほとんど一方のトランジスタのみに電流が流れるようになることが分かる。

この性質を利用た論理回路を「エミッタ結合論理回路」という。実用的には、出力インピーダンスを 下げるとともに、入出力の直流信号レベルを合わせるため、コレクタ出力部にさらにエミッタ・フォ ロワーを付加した構成で用いられる。 FETには、接合形 FET(JFET)、絶縁ゲート型(MOSFET等)、ショットキー接合 FET(MESFET) などがある。いずれも、ソース、ドレイン、ゲートの三端子からなる電子素子であって、ゲートに印 加する電圧によって、ソースとドレイン間の伝導度を変調することにより、ソースとドレイン間に流 れる電流を制御することができる点において共通する。しかし、接合形 FET では、ゲートと伝導チャ ンネルがダイオード接合になっていて、ゲートに印加する電圧によってチャンネル断面の空乏層と伝 導領域の割合を制御するようになっているのが特徴であり、MOSFET では、ゲートと伝導チャンネル は、薄い酸化膜で絶縁されており、ゲートに印加する電圧によって、表面に形成された反転層の伝導 度を制御するようになっているのが特徴であり、さらに、ショットキー接合形の FET では、ゲートと 伝導チャンネルは、金属・半導体のショットキー接合によって分離されており、ゲート電圧によって、 絶縁基板とゲートに挟まれた伝導領域の空乏層と伝導領域の割合を制御するようになっているのが特 徴であるというように、具体的な動作原理においては、相互に異なっている。一方、電子素子として モデル化した場合には、共通する特徴が多いので、ここでは、最も一般的に用いられている MOSFET について、その詳細を議論することにする。なお、ショットキー接合形の FET は *GaAs* 系の化合物半 導体に特有の技術であって、専ら、高周波領域での信号処理に用いられている。

直流特性

バイポーラトランジスタには、npnトランジスタと pnpトランジスタとがあったように、MOSFET にも、n チャンネル・トランジスタと p チャンネル・トランジスタとがある。n チャンネル・トランジ スタは、伝導チャンネル部が p タイプであって、ゲートに伝導チャンネル相対で正の電圧を印加する と伝導チャンネルが n タイプに反転するようになっているトランジスタである。一方、p チャンネル・ トランジスタは、伝導チャンネル部が n タイプであって、ゲートに伝導チャンネル相対で負の電圧を 印加すると伝導チャンネルが p タイプに反転するようになっているトランジスタである。以下、特に 断らなければ、n チャンネル・トランジスタを前提として議論を進める。

バイポーラトランジスタにおいては、*V_{BE}*が指数関数の肩にのっているため、ベース電圧の微小な 変化によって、コレクタ電流を大幅に変えることができた。一方、MOSFET では、このような指数関 数型の応答ではなく、高々*V_{GS}*の二乗に比例したドレイン電流応答が得られるにすぎない。

しかし、トランジスタの特性を、ゲートの形状 (W,L) によって大幅に制御できること、および、ゲートが絶縁されていること、ドレイン抵抗が高いこと、さらには、集積度を高くできること等の特徴を 有している。そこで、バイポーラトランジスタの適用領域においてもこれと競合すると同時に、さら に広範囲の適用領域を獲得してきている。

具体的には、MOSFET の直流特性は、ソース接地の形式で

$$\begin{split} I_D &= \frac{k_p}{2} \frac{W}{L} \{ 2(V_{GS} - V_{TO}) V_{DS} - V_{DS}^2 \} (1 + \lambda V_{DS}) \quad (\. \ \ \mathcal{KL} \cup, V_{DS} \leq V_{GS} - V_{TO}) \\ I_D &= \frac{k_p}{2} \frac{W}{L} (V_{GS} - V_{TO})^2 (1 + \lambda V_{DS}) \quad (\. \ \ \mathcal{KL} \cup, V_{DS} > V_{GS} - V_{TO}) \end{split}$$

のように表すことができる。第一式は、 $V_{DS} \leq V_{GS} - V_{TO}$ の領域において該当し、この領域を線形領域という。線形領域は、主にアナログスイッチとしての動作領域である。第二式は、 $V_{DS} > V_{GS} - V_{TO}$ の領域で該当し、この領域を飽和領域²⁴という。一般に、飽和領域は、増幅器を構成するときに用いられる動作領域である。

ここで、*k_p*は、プロセスゲイン係数と呼ばれる量であり、ゲート酸化膜の単位面積当たりの容量*C_{ox}*と、ゲート直下の半導体表面でのモビリティーに比例する。また、*V_{TO}*は、ゲート直下の半導体表面に

 $^{^{24}}$ バイポーラトランジスタでは、 $V_{CE} \ll V_{BE}$ となってコレクタ電流がほとんど流れなくなってしまっているような状況を指して飽和といっているので、両者を混同しない様に注意されたい。

導伝チャンネル(反転層)を形成するために必要なゲート電圧に対応する。さらに、WとLは、ゲートの形状を表すためのパラメータであって、Wは、ソースとドレーンが相対している横方向の距離をあらわし、Lは、ソースとドレインを隔てている距離を表している²⁵。入は、バイポーラトランジスタにおけるアーリー効果と類似の特性を表すために導入されたものであるが、物理的には、V_{DS}の増大により、実効ゲート長(L)が短く見えるようになるためにドレイン電流が増大する現象を表現するためのパラメータである。

このことから、MOSFET は、酸化膜の厚み、ゲート形状等の幾何学的な形状によって、特性を大幅 に調整する可能性があることが分かる。ただし、 V_{TO} については、これらの形状のみならず、チャン ネル領域の不純物濃度にも依存する。その結果、 $V_{GS} = 0$ でもドレイン電流を流すことができるよう にすることもできる。このような MOSFET をデプレッション型の FET という。一方、 $V_{GS} = 0$ で は、ドレイン電流が流れない MOSFET をエンハーンスメント型の FET という。

ちなみに、 $\lambda = 0$ のもとで第一式を V_{DS} で微分すると、

$$\frac{dI_D}{dV_{DS}} = k_p \frac{W}{L} (V_{GS} - V_{TO} - V_{DS})$$
$$R_{on}|_{V_{DS}=0} = \frac{1}{(V_{GS} - V_{TO})k_p W/L}$$

となる。 $R_{on}|_{V_{DS}=0}$ を、MOSFETをアナログスイッチとして用いたときのオン抵抗²⁶という。 第二式を V_{GS} で微分すると、

$$\frac{dI_D}{dV_{GS}} = k_p \frac{W}{L} (V_{GS} - V_{TO})(1 + \lambda V_{DS})$$
$$= \sqrt{2I_D k_p \frac{W}{L} (1 + \lambda V_{DS})}$$

を得る。これを、トランスコンダクタンスといって、 g_m の記号で表示する。これに対応するバイポー ラ・トランジスタのトランスコンダクタンスは、 $\frac{1}{r_e} = \frac{I_E}{kT/q}$ であって、エミッタ電流に比例していた のであるが、MOSFETでは、 I_D のルートに依存するに過ぎないため、トランスコンダクタンスを大 きくする目的で、ドレイン電流を増大させてもそれだけでは効率的でない。同時にW/Lを増大させる ことも考慮する必要がある。

交流特性(ソース接地)

MOSFET は、ゲート印加した電圧によって、ドレイン・ソース間に流れる電流を制御するように なっているので、電圧制御・電流源の類型として考えることができる。しかし、ゲートが絶縁されて おり、本質的に $r_i \rightarrow \infty$ なので、小信号特性を記述するためのパラメータとしては、Z、H パラメータ は、不適当である。一方、Y、G、F パラメータにおいては、 $1/r_i = 0$ とすれば足りるので、MOSFET の取扱いに適している。そこで、演算増幅器のYパラメータ表示を参照して、さらにA(s)を $-g_m r_o$ に変更すると、低周波でのYパラメータ (Y_{dc})として、

$$Y_{dc} = \begin{pmatrix} 0 & 0\\ g_m & 1/r_o \end{pmatrix}$$

を得る。

 $^{^{25}}$ Lの典型的な値は、毎年更新されている。2001年現在では、0.6 ~ 0.3 μm となっている。また、酸化膜の厚みも同時に薄くなっている。 $L=0.6~\mu m$ プロセスに対応する、酸化膜厚みは、13 nm 程度である。

 $^{^{26}}k_p = 20 \ \mu A/V^2 \$ とし、 $V_{GS} - V_{TO} = 4V$ 、 $W/L = 10 \$ とすると、オン抵抗は 1.25 kΩ となる。

さらに、ゲート・ドレイン間のいわゆるオーバーラッ プ容量 (C_{GD})に対応する Y パラメータ (Y_c) は、

$$Y_{GD} = \begin{pmatrix} sC_{GD} & -sC_{GD} \\ -sC_{GD} & sC_{GD} \end{pmatrix}$$

のように表すことができる。この他、左図に示すように、ゲート・ソース間容量 (C_{GS})、ゲート・バルク間容量 (C_{GB})、ドレイン・バルク間容量 (C_{DB}) 等がトランジスタの動作特性に影響し得る。

しかし、*C_{GD}*を除く三種類の寄生容量は、外部負荷と同一の取扱いが可能であり、また、トランジ スタの動作の特徴を抽出するためには議論が複雑になりすぎるので、ここでは、とりあえず、これら 三種類の容量の効果については無視することにする。なお、ソース・バルク間にも*C_{SB}*なる容量が存 在するが、ソース接地の形式においては、ソースとバルクは、接地として取り扱えば足りるので、こ の容量が影響することはない。

したがって、ソース接地のパラメータ Y_s は、 $Y_{dc} + Y_{GD}$ と表すことができる。負荷を付けた状態での入出力インピーダンスは、 Y_s に Y_{sL} を加えて、Zパラメータを求めればよい。具体的には、

$$Z = \begin{pmatrix} R_s \| \frac{sC_{GD}(r_o \| R_L) + 1}{sC_{GD} \{ 1 + g_m(r_o \| R_L) \}} & \frac{sC_{GD}R_s Z_{22}}{1 + sC_{GD}R_s} \\ -\frac{(g_m - sC_{GD})(r_o \| R_L) Z_{11}}{1 + sC_{GD}(r_o \| R_L)} & r_o \| R_L \| \frac{sC_{GD}R_s + 1}{sC_{GD}(1 + R_s g_m)} \end{pmatrix}$$

となる。

 Z_{11} は、入力インピーダンスをあらわしており、正味の入力インピーダンスは、 $\frac{sC_{GD}(r_o||R_L)+1}{sC_{GD}\{1+g_m(r_o||R_L)\}}$ であるから、低周波では、容量 $C_{GD}\{1+g_m(r_o||R_L)\}$ が支配的となる。これは、既出のミラー容量である。

Z₁₂は、出力側から電流信号を入力したときのトランスインピーダンス・ゲインを表している。低 周波の極限では、利得は、ゼロである。すなわち、低周波では単方向化が達成されていることになる。

 Z_{21} は、入力側から電流信号を入力したときのトランスインピーダンス・ゲインを表している。低周波の極限では、 $-g_m R_s(r_o || R_L)$ となる。電圧利得で表せば、 $-g_m(r_o || R_L)$ である。

 Z_{22} は、出力インピーダンスであるが、 R_L を除いた正味の出力インピーダンスは、 $r_o \parallel \frac{s \cup_{GD} \kappa_s + 1}{s C_{GD} (1 + R_s g_m)}$ であって、低周波の極限では、 r_o に漸近する。

交流特性(ドレイン接地)

ドレイン接地は、バイポーラトランジスタにおけるコレクタ接地形式に類似の接地形式である。ドレイン接地のYパラメータを Y_d 置くと、ソース接地の電圧・電流 $(v_2^s, v_2^s, i_1^s, i_2^s)$ の間には、

$$\begin{pmatrix} i_1^s \\ -i_2^s \end{pmatrix} = Y_d \begin{pmatrix} v_1^s - v_2^s \\ -v_2^s \end{pmatrix}$$

の関係が成り立つので、ソース接地のYパラメータ Ysの関係式、

$$\begin{pmatrix} i_1^s \\ i_2^s \end{pmatrix} = Y_s \begin{pmatrix} v_1^s \\ v_2^s \end{pmatrix}$$

を代入して、

$$Y_d = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} Y_s \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}^{-1}$$

を得る。

したがって、低周波でのYパラメータは、

$$Y_d = \begin{pmatrix} 0 & 0\\ -g_m & g_m + 1/r_o \end{pmatrix}$$

となる。付加されるべき容量としては、左図に示 すように、ゲートと接地の間に、*C_{GD}* と*C_{GB}* が、 ソースと接地の間には、*C_{SB}* が、ゲートとソース の間には、*C_{GS}* がある。なお、ドレインが接地さ れているために *C_{DB}* はトランジスタの動作に影響 しない。*C_{GS}* 以外は、外部負荷と同様に扱うこと ができるので、ここでは、*C_{GS}* の効果のみを考慮 して、交流特性について議論する。

ソース接地の交流特性の解析と同様に、 Y_d と、 C_{GS} に係るYパラメータと、信号源抵抗 R_s と負荷抵抗 R_L に係るYパラメータとを合計した後、そのYパラメータの逆行列として、Zパラメータ

$$Z = \begin{pmatrix} R_s \| \{ (r_o \| R_L) + \frac{1}{sC'_{GS}} \} & \frac{sC'_{GS}R_L Z_{11}}{1 + sC'_{GS}(r_o \| R_L)} \\ \frac{R_s g_m Z_{22}(1 + sC_{GS}/g_m)}{1 + sC_{GS}R_s} & r_o \| R_L \| \frac{1 + sC_{GS}R_s}{g_m(1 + sC_{GS}/g_m)} \end{pmatrix}$$

を得る。ただし、 $C'_{GS} = \frac{C_{GS}}{1 + g_m(r_o \| R_L)}$ である。

正味の入力インピーダンスは、 C'_{GS} と $r_o || R_L$ の直列インピーダンスとなっている。ソースとゲート は、同相で動作するため C_{GS} は、むしろ、 $1 + g_m(r_o || R_L)$ の因子分だけ小さな容量として実効的に作 用している。これは、ミラー効果とは反対の作用である。

Z12 による、出力から入力へ利得は、低周波では、ゼロに漸近する。

 Z_{21} は、入力から出力へのトランスインピーダンス・ゲインである。一見、 $s = -g_m/C_{GS}$ にゼロ点 と、 $s = -1/(C_{GS}R_s)$ にポールを有しているようにもみえるが、 $r_o || R_L$ が十分に大きいという近似で は、 Z_{22} のゼロ・ポールと相殺することに注意する必要がある。したがって、相殺が成立する限りに おいて、 Z_{21} は、高周波においても、低周波の値を維持することとなる。さらに、この近似での電圧 利得は、エミッタ・フォロワーとの類推²⁷で予測できるように1である²⁸。

 $^{^{27}}$ エミッタ・フォロワーでは、ベース・エミッタ間の電圧 V_{BE} は、ほぼ一定であったが、ソース・フォロワーでは、そのような本質的な制約はないから、W/Lを調節することにより V_{GS} について大幅な設計余地がある。

²⁸ソースとサブストレートの間に電位差があると、いわゆるバックゲート効果のために出力インピーダンスが影響を受けて、

正味の出力インピーダンスは、低周波では、 $r_o \| (1/g_m) \approx 1/g_m$ に漸近し、高周波では、 $r_o \| R_s$ に漸近する。高周波では、 C_{GS} によって、入力と出力が短絡されるからである。

交流特性(ゲート接地)

ゲート接地は、バイポーラトランジスタにおけるベース接地形式に類似の接地形式である。ゲート 接地のYパラメータを Y_g 置くと、ソース接地の電圧・電流 $(v_1^s, v_2^s, i_1^s, i_2^s)$ の間には、

$$\begin{pmatrix} -i_2^s \\ i_2^s \end{pmatrix} = Y_g \begin{pmatrix} -v_1^s \\ v_2^s - v_1^s \end{pmatrix}$$

の関係が成り立つので、ソース接地のYパラメータY。についてのの関係式を代入して、

$$Y_g = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} Y_s \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}^{-1}$$

を得る。

したがって、低周波でのYパラメータは、

$$Y_g = \begin{pmatrix} g_m + 1/r_o & -1/r_o \\ -g_m - 1/r_o & 1/r_o \end{pmatrix}$$

となる。付加されるべき容量としては、左図に示す ように、ソースと接地の間に、 C_{SB} と C_{GS} が、ド レインと接地の間に、 C_{GD} と C_{DB} がある。なお、 C_{GB} は、ゲートが接地されているために、トラン ジスタの動作には影響しない。

ここで考慮しているモデルの範囲では、ソースとドレインの間には、帰還容量が存在しないことか らも予想できるように、ゲート接地は、広帯域の増幅器を構成するための要素として用いることがで きる。

Y_qに、信号源抵抗と負荷抵抗を取付けて、Zパラメータを求めると、

$$Z = \begin{pmatrix} R_s \| \frac{R_L + r_o}{1 + g_m r_o} & \frac{R_L Z_{11}}{R_L + r_o} \\ \frac{R_s Z_{22}(1 + g_m r_o)}{R_s (1 + g_m r_o) + r_0} & R_L \| \{ R_s (1 + g_m r_o) + r_o \} \end{pmatrix}$$

となる。入力部からは、出力部の負荷が1+g_mr_oの因子分だけ小さく見え、出力部からは、信号源の 抵抗が高く見えるようになっている。したがって、ベース接地の増幅回路と同様にして、低入力イン ピーダンス、高出力インピーダンスの増幅系を構成することができることが分かる。

 Z_{12} は、 R_L と r_o の並列抵抗のうち後者の分流された電流が Z_{11} によって電圧に変換されるように なっていると理解することができる。また、 Z_{21} は、 R_s と $\frac{r_o}{1+g_m r_o}$ の並列抵抗のうち、後者に分流 した電流が Z_{22} によって電圧に変換されるようになっていると理解することができる。

ゲート接地形式と類似の回路形式における動作態様にアナログスィッチがある。アナログスィッチでは、ソースとドレインは、対等のはずである。実際、 $V_{DS} \leq V_{GS} - V_{TO}$ での直流特性、

$$I_D = \frac{k_p}{2} \frac{W}{L} \{ 2(V_{GS} - V_{TO}) V_{DS} - V_{DS}^2 \}$$

は、 $V_{DS} = -V_{GD} + V_{GS}$ と置き換えることにより、

$$I_{D} = \frac{k_{p}}{2} \frac{W}{L} V_{DS} (V_{GS} + V_{GD} - 2V_{TO})$$

電圧利得が1を下回る結果となる。ソースフォロワーのトランジスタがウェル中に作り込まれていて、バルクと分離されていれ ば、ソースとウェルを短絡することにより、バックゲート効果を抑制することができる。

のように、ソースとドレインを対等な形式に書き表すことができる²⁹。線形領域においては、ソース とドレインとは、区別できないのであるから、Y_aによって表現されるゲート接地の形式は、飽和領域 に限って妥当するものであることが分かる。

そこで、 Y_g において、 $Z_{11} = Z_{22}$ 、 $Z_{12} = Z_{21}$ とすれば、ソースとドレインは対等になるので、ア ナログスイッチの交流特性は、Yパラメータ Ya によって、

$$Y_a = \begin{pmatrix} g_m + 1/r_o & -(g_m + 1/r_o) \\ -(g_m + 1/r_o) & g_m + 1/r_o \end{pmatrix}$$

のように表すことができる。入出力間に介在する抵抗 R に対応する Y パラメータが $\begin{pmatrix} 1/R & -1/R \\ -1/R & 1/R \end{pmatrix}$ となることを考慮すれば、アナログスィッチは、 $r_o \| \frac{1}{g_m}$ の抵抗として取り扱えば足りることが分かる。

2.3.4 MOSFET の組合回路

左図には、ダイオード接続の MOSFET M1 におい て、ソースを接地し、ゲートとドレインを抵抗 R_D を介して電源 VDD に接続した回路が示してある。 バイポーラトランジスタであれば、対応するコレク タの電位は、VBE であるからほぼ一定の電圧として 取り扱うことができるが、MOSFET では、そのよ うな取扱いは、不適当である。ドレイン電流と、抵 抗R_Dに流れる電流は、等しいから、飽和領域で動 作していることを仮定すれば、ドレイン電圧を Vout として、

$$\frac{V_{DD} - V_{out}}{R_D} = \frac{k_p}{2} \frac{W}{L} (V_{out} - V_{TO})^2$$

が成り立つ。

そこで、Vout として、

$$V_{out} = V_{TO} - \frac{1}{R_D k_p W/L} \{ 1 - \sqrt{1 + 2R_D k_p (V_{DD} - V_{TO}) W/L} \}$$

を得る。したがって、 R_D の値によって、 V_{out} は、大きく変動し得る³⁰ことが分かる。

 $^{^{29}}V_{DS}$ の符号によって、 I_D の符号も変るようになっていることに注意して欲しい。 $^{30}k_pW/L = 200 \ \mu A/V^2$ 、 $V_{TO} = 1 \ V$ 、 $V_{DD} = 5 \ V$ とすると、 $R_D = 1 \ k\Omega$ では、 $V_{out} = 2.71 \ V$ であり、 $R_D = 32 \ k\Omega$ では、 $V_{out} = 1.65 V$ である。

≩ RD

·M2

M 1

VOUT>

左図には、MOS トランジスタ *M*₁ と *M*₂ とを並列 接続した回路が示してある。*M*₁ と *M*₂ は、入力・ 出力の電圧を共通としているので、Y パラメータの 加算として、並列回路の特性を記述することができ る。すなわち、並列回路の Y パラメータは、

$$\begin{pmatrix} 0 & 0 \\ g_{m1} + g_{m2} & \frac{1}{r_{o1}} + \frac{1}{r_{o2}} \end{pmatrix}$$

であって、トランスコンダクタンスは、単純加算で あるが、出力インピーダンスは、並列加算となるこ とが分かる。

左図は、MOS トランジスタ *M*₁ と *M*₂ とからなる カスコード回路である。バイポーラトランジスタの カスコード回路の解析手法にならって、F パラメー タによる解析を具体的に実行してみることにする。 ソース接地のF パラメータは、

$$F_{s1} = \begin{pmatrix} -\frac{1}{g_{m1}r_{o1}} & -\frac{1}{g_{m1}} \\ 0 & 0 \end{pmatrix}$$

であり、ゲート接地のFパラメータは、

$$F_{g2} = \left(\begin{array}{cc} \frac{1}{g_{m2}r_{o2} + 1} & \frac{r_{o2}}{g_{m2}r_{o2} + 1} \\ 0 & 1 \end{array} \right)$$

 $F_{s1}F_{g2}$ lt,

VGG

VIN

VDD

$$F_{s1}F_{g2} = \begin{pmatrix} -\frac{1}{g_{m1}r_{o1}(g_{m2}r_{o2}+1)} & -\frac{r_{o2}}{g_{m1}r_{o1}(g_{m2}r_{o2}+1)} - \frac{1}{g_{m1}} \\ 0 & 0 \end{pmatrix}$$

となる。これを、ソース接地のFパラメータと比較すると、トランスコンダクタンスは、 $g_{m2}r_{o1}r_{o2} \gg r_{o1}, r_{o2}$ の仮定のもとで $\frac{g_{m1}r_{o1}(g_{m2}r_{o2}+1)}{g_{m2}r_{o1}r_{o2}+r_{o1}+r_{o2}} \approx g_{m1}$ であるから、 M_1 のトランスコンダクタンスを維持していることが分かる。一方、出力インピーダンスについては、 $g_{m2}r_{o1}r_{o2}+r_{o1}+r_{o2}$ となって、格段に理想特性に漸近することが分かる。

バイポーラトランジスタの増幅器におけるのと同様に、MOSFET のカスコード回路は、ミラー効果 の低減、オープンループゲインの改善の目的で用いられる。特に、MOSFET の演算増幅器において は、電圧対電流増幅器の形態をとることが多いため、出力段においても、出力インピーダンスを高め るためにカスコード回路が頻繁に用いられる。

左図は、pMOS と nMOS によるインバータ回路で ある。交流的には、 $M_1 \ge M_2$ の並列接続と考える ことができるので、回路全体のトランスコンダクタ ンス・ゲインは、 $g_{m1} + g_{m2}$ であり、出力インピー ダンスは、 $r_{o1} || r_{o2}$ である。

次に、直流特性を考える。*M*₁ と *M*₂ のそれぞれに ついて、

$$I_{D1} = \frac{k_{p1}}{2} \frac{W_1}{L_1} (V_{in} - V_{TO1})^2$$
$$I_{D2} = \frac{k_{p2}}{2} \frac{W_2}{L_2} (V_{DD} - V_{in} - |V_{TO2}|)^2$$

が成り立つ。

ここで V_{TO2} について絶対値をとっているのは、pMOS の V_{TO} は、負の値とするのがコンベンションだからである。 V_{in} と V_{out} とを開放とした上で、入力と出力をショーすると、 $I_{D1} = I_{D2}$ となって回路は平衡する。この時の電圧を V_{th} 置くと、

$$V_{th} = \frac{\sqrt{k_{p1}W_1/L_1}V_{TO1} + \sqrt{k_{p2}W_2/L_2}(V_{DD} - |V_{TO2}|)}{\sqrt{k_{p1}W_1/L_1} + \sqrt{k_{p2}W_2/L_2}}$$

を得る。 $V_{in} > V_{th}$ であれば、nMOSのドレイン電流が支配的になって、出力の電圧は、低電位 (GND) レベルとなるが、逆に、 $V_{in} < V_{th}$ であれば、pMOSのドレイン電流が支配的になって、出力の電圧 は、高電位 (V_{DD})のレベルに達する。この性質を利用したのが、CMOS 方式の論理回路である。 V_{th} は、W/L、 k_p 、 V_{TO} の選択により、かなり大幅に調整することが可能³¹である。W/Lは、回路設計 段階での考慮対象であり、 $k_p \ge V_{TO}$ は、半導体プロセス条件における考慮の対象である。ちなみに、 $k_{p1}W_1/L_1 = k_{p2}W_2/L_2 \ge$ すれば、 $V_{th} = V_{DD}/2 \ge$ することができるから、論理レベルの H \ge L の余 裕が最大となる。これは、いわゆる TTL 論理回路との比較における一つの利点である。また、出力の 論理レベルが確定した後は、 M_1 、 M_2 のいずれにも電流が流れないので、低消費電力の論理回路を構 成することができるという利点もある。

最後に発振器の回路例を示そうと思う。左図において、 V_{in} と V_{out} とを直結すると、MOSFET を用いた移相形の RC 発振回路となる。発振条件は、 $Im(\frac{V_{out}}{V_{in}}) = 0$ を位相条件とし、かつ、電力条件として $\frac{|V_{out}|}{|V_{in}|} > 1$ が要求される。前者の条件から、発振周波数が決定され、後者の条件から FET の利得に制約が課せられる。

 $[\]overline{{}^{31}}$ 例えば、 M_1 のドライブ能力を大きくすることによって V_{th} は低下する。具体的には、 $k_{p1}W_1/L_1=400~\mu A/V^2$ 、 $k_{p2}W_2/L_2=49~\mu A/V^2~V_{TO1}=|V_{TO2}|=1~V$ とすると、 $V_{th}=1.78~V$ となる。

FET と負荷抵抗 R_D を含む系の F パラメータは、

$$F_{M} = \begin{pmatrix} 0 & -\frac{1}{g_{m}} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{R_{D} \parallel r_{o}} & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{g_{m}(R_{D} \parallel r_{o})} & -\frac{1}{g_{m}} \\ 0 & 0 \end{pmatrix}$$

である。また、CRからなる微分回路のFパラメータが、 $F_{CR} = \begin{pmatrix} 1 & \frac{1}{sC} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{R} & 1 \end{pmatrix} = \begin{pmatrix} \frac{1+sCR}{sCR} & \frac{1}{sC} \\ \frac{1}{R} & 1 \end{pmatrix}$ となることも容易に導くことができる。

そこで、 V_{in} から V_{out} までの全体のFパラメータは、 $F = F_M F_{CR}^3$ となる。MOSFET の入力ゲートが絶縁ゲートである事を考慮すると、 $V_{in} = F_{11}V_{out}$ である。したがって、 $\frac{1}{F_{11}}$ について、位相条件、及び、電力条件を調べればよい。

その結果、発振周波数として、

$$f = \frac{1}{2\pi RC\sqrt{6 + 4(R_D \parallel r_o)/R}}$$

を得る。また、 g_m に課せられる条件は、

$$(R_D \parallel r_o)g_m > \frac{29R^2 + 23R(R_D \parallel r_o) + 4(R_D \parallel r_o)^2}{R^2}$$

となる。

なお、 $\frac{1}{F_{11}}$ は、いわゆる一巡伝達関数と符号を異にする。一巡伝達関数は、負帰還を想定しているからである。したがって、当該一巡伝達関数のナイキスト軌跡を描く場合には、 $-\frac{1}{F_{11}}$ を用いればよい。

3 信号処理回路

3.1 信号発生源

3.1.1 放射線検出器

放射線検出器とは、一般に、荷電粒子、γ線などと検出器体積中の物質との電離反応によって生じた電荷を検出するようになっている装置である。

電離イオン、及び電子は、検出器体積中に形成されている電界の作用によってドリフトし、最終的 には、検出器体積中から排除されるようになっている。

読み出し電極には、比較的規模の小さな、低雑音であって、かつ、高利得の増幅器をとりつける。この増幅器を、前置増幅器と称する。前置増幅器は、検出器の発生する電流信号をその波形を保ちつつ 電圧信号に変換したり、電流信号を積分すると同時に電圧信号に変換するような機能を担うものであ る。前者を電流増幅形前置増幅器、後者を荷電増幅形前置増幅器という。

それでは、どのようにして読み出し電極には電流(電荷)が誘起されるのであろうか? 検出器体積 全体に印加されている電界によってイオンないしは電子が読み出し電極にに向かってドリフトし、つ いには当該読み出し電極に到達することによって信号が誘起されるのであろうか?

具体例によってこの点を明らかにしたい思う。半径 a の接地された導体球の中心をめがけて、点電 荷 q が、 $r = r_0$ の地点からドリフトを開始したとする。導体球に誘起される電荷は q' = -aq/rであ るから³²、導体球を接地する導線には、

$$I = -\frac{dq'}{dt}$$

³²電気影(映)像法による。

の電流が流れる(導体球から流れ出す)はずである。電流信号は、明らかに、電荷が導体球に到達す る以前から流れ始めている。この電流を積分すると

$$Q = \int_{t_i}^{t_f} I dt$$
$$= -\int_{r_0}^{a} \frac{aq}{r^2} dt$$
$$= q(1 - \frac{a}{r_0})$$

を得る。

それでは、最終的にドリフトしてきた電荷 (q) が読み出し電極に到達したときには何が起こるであろうか?ドリフト電荷 q が導体球に到達する直前におけるミラーイメージによる電荷 q' は -q となっているので、この電荷がドリフト電荷を相殺すると考えれば良いようにも考えられる。

しかし、実際に導体球から流れ出た電荷は q に足りない量であるから、ミラーイメージによる電荷 との相殺は完全ではない。

実は、 $r = r_0$ の位置に突然電荷 q を置いたところにトリックがある。電荷 q は、無限遠方からその 位置まで運んでくるか、または、 $q \ge -q$ の対としてその位置において発生させる必要がある。前者の 場合には $r_0 \to \infty$ と読み替えれば足りる。後者の場合には -qの電荷が導体球から無限遠方に向かっ て遠去ることにより帳尻をあわせることができる。放射線検出器では、後者のケースが該当する。もっ とも、たとえば、イオンのドリフト速度が極端に遅い場合には、電子成分が全部電極まで到達したと しても、有限の積分時間では、収集することのできる電荷は、100%になり得ないことに注意する必要 がある。

ミラーイメージによる方法、又は、ドリフト電荷による電束密度を具体的に求める方法³³は、実際 には非常に煩雑であることが多い、そこで、キャパシタンス・マトリックスを用いた相反定理の応用 問題として処理することが多い。

3.1.2 平行平板型の検出器

そこで、次に平行平板形の検出器についてキャパシタンス・マトリクスを用いて、信号の誘起メカ ニズムを考察する。

平行平板形の検出器の一方の電極を接地し、他方の電極を読み出し電極とする。読み出し電極には、 高抵抗を介して電圧 V_b が印加され、検出器体積内には接地電極に向かう電界 $E = V_b/d$ が生じている ものとする。ここで d は接地電極と読み出し電極間の距離を表す。この電界によって、電離イオン又 は電子が検出器体積内をドリフトするようになっている。

キャパシタンスマトリクスを次のように定義する。第一の電極を読み出し電極とし、第二の電極をドリフト電荷の位置に設けられた仮想的な微小電極に割り振る。このとき、電荷 (Q_1, Q_2) と電 $E(V_1, V_2)$ は、キャパシタンスマトリクス C_{ij} を介して、

$$\begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

のように、関係づけることができる。

³³導体球上での積分 / **D**dS によって導体球に誘起されている電荷を評価することができる。

まず、仮想電極において $Q_2 = 0$ の場合には

$$\begin{pmatrix} Q_1 \\ 0 \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

が成り立ち、さらに、仮想電極に $Q_2 = q_s$ をおいたときには、

$$\begin{pmatrix} Q_1 + Q \\ q_s \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} V_1 + \Delta V_1 \\ V_2 + \Delta V_2 \end{pmatrix}$$

が成り立つものとする。上記二つの関係式と $C_{12} = C_{21}$ (相反関係)とから、

$$\frac{q_s - C_{22}\Delta V_2}{\Delta V_1} = \frac{Q - C_{11}\Delta V_1}{\Delta V_2}$$
(二次の微小量を無視する近似で) →
$$Q = q_s \frac{dV_2}{dV_1}$$

を得る。

<u>dV</u> <u>dV</u> <u>dV</u> <u>dV</u> <u>i</u> は、ウェイティングポテンシャルと呼ばれているものであり、読み出し電極に1ボルトを与え たときの仮想電極位置での電圧を表すものである。この議論に依れば、もともと、ドリフト電荷が読 み出し電極の表面に生成する電束密度を計算しなければならなかったものが、読み出し電極のポテン シャルを境界条件として、検出器体積内のポテンシャルを求める問題に焼き直されたことになる。前 者の計算にくらべれば、後者の方法は格段に優れていることがわかる。

そこで、平行平板形の検出器のウェイティングポテンシャル $W_p(x)$ は、座標原点を読み出し電極に 置き、x軸を接地電極に向かって採ると、

$$W_p(x) = \frac{d-x}{d}$$

のように非常に簡単な形で表すことができる。

検出器が発生する電流は上記静的な電荷を微分することにより得ることができるから、

$$I = \frac{dQ}{dt} \\ = q_s \frac{dW_p}{dx} \left(\frac{dx}{dt}\right)$$

となる。ここで、電荷の微分に負号がついていないことに注意すること。*Q*は、*qs*によって、読み出 し電極に誘起される電荷であって、接地導線を介して出入りする電荷ではないからである。*dx/dt*は、 ドリフト電荷の速度を表しており、一般には、モビリティーを係数として、電界に比例する。

ドリフト電荷の出発点を $x = x_1$ とし、終点を $x = x_2$ とすると、この間に検出器が読み出し電極に 誘起する電流の積分値 (Q_{net}) は、

$$Q_{net} = \int I dt$$

=
$$\int_{x_1}^{x_2} q_s \frac{dW_p}{dx} dx$$

=
$$q_s(W_p(x_2) - W_p(x_1))$$

=
$$\frac{q_s}{d}(x_1 - x_2)$$

となる。積分電荷は、ドリフト開始位置のウェイティング・ポテンシャルとドリフト終了位置のウェ イティングポテンシャルの差を求めて、これにドリフト電荷の電荷量を乗ずることによって得ること ができる。 この一般的な結果を次の節で同軸円柱形の検出器に応用してみることにする。

3.1.3 同軸円柱形の検出器

内筒の外半径をaとし、外筒の内半径をbとし、内筒に電圧 1 Vを与えると、同軸中心から距離r(ただしb > r > a)の位置におけるポテンシャルは、

$$W_p(r) = \frac{\ln(b/r)}{\ln(b/a)}$$

となる。これが、同軸円柱形検出器のウェイティング・ポテンシャルである。内筒の電位を +V₀ にバ イアスし、外筒を接地すると、検出器体積中には、

$$\phi(r) = V_o \frac{\ln(b/r)}{\ln(b/a)}$$
$$E(r) = \frac{V_o}{r\ln(b/a)}$$

なるポテンシャルと電界が生ずる。そうすると、 $r = r_0$ なる位置で、電子とイオンの対 (-q と q) が 生成されたとすると、電子は、内筒に向かってドリフトし、イオンは、外筒に向かってドリフトする から、

$$Q_n = -q(W_p(a) - W_p(r_0)) Q_p = q(W_p(b) - W_p(r_0))$$

の電荷を読み出し電極 (内筒) に供給する。ここで、q は、電子の素電荷を、 Q_n と Q_p は、それぞれ、 電子およびイオンの寄与を表している。

$$Q_n + Q_p = q(W_p(b) - W_p(a))$$

= $q \frac{ln(b/b) - ln(b/a)}{ln(b/a)}$
= $-q$

であるから、電子とイオンの寄与を合計して帳尻が合うようになっている。

次に、内筒の近傍でのみ、電子・イオン対が生成されるような場合について議論する。内筒を陽極と するプロポーショナル・カウンターような検出器が該当する。すなわち、検出器体積中で極少数の電 子・イオン対が生成され、このうち電子は、陽極に引き付けられ、ついには、ガス増幅作用によって、 二次的に多数の電子・イオン対を生成することができるような領域に達する。かかる領域では、電界 が典型的に 10⁶ V/m 以上であることを要するから、ガス増幅がおこなわれるのは内筒の極近傍に限ら れることになる。

かかる場合には、ガス増幅によって生成された電子成分は半径方向には、ほとんど移動しないこと になるので、ウェイティング・ポテンシャルの観点に立てば、信号の生成にはほとんど寄与しないも のと考えることができる。そこで、イオンの半径方向へのドリフトのみを考慮して信号の電流を求め ることにする。

ウェイティング・ポテンシャルを用いて、イオンによって誘起される電荷は、 $Q_p = q\alpha_g(W_p(r) - W_p(a))$ のように表すことができる。ここで、 α_q は、ガス増幅率を表している。電流は、 Q_p を時間で微分して、

$$I = q\alpha_g \frac{dW_p}{dr} \frac{dr}{dt}$$
$$= -\frac{q\alpha_g}{rln(b/a)} \frac{dr}{dt}$$
$$= -\frac{q\alpha_g \mu V_o}{r^2(ln(b/a))^2}$$

を得る。上記第三式においては、 $dr/dt = \mu E$ の関係を用いた。 μ は、イオンのモビリティーである。 簡単のため、電界強度についての依存性はないものと仮定した。 $dr/dt = \mu E$ は、 $r \ge t$ の関係を定め るものであって、積分を実行することにより、

$$r^{2} = \frac{2\mu V_{o}}{ln(b/a)}(t+t_{0})$$
$$t_{0} = \frac{a^{2}ln(b/a)}{2\mu V_{o}}$$

を得る。これを、電流の式に代入すると、

$$I = -\frac{q\alpha_g}{2ln(b/a)}\frac{1}{t+t_0}$$

となる。電流波形が、*t*+*t*₀ に反比例する³⁴ことに注目して欲しい。 電流信号は、イオンが、外筒の内壁に到達するまで継続する。従って、信号継続時間の最大値は、

$$b^{2} = \frac{2\mu V_{o}}{ln(b/a)}(t_{max} + t_{0})$$
$$t_{max} = \frac{b^{2}ln(b/a)}{2\mu V_{o}} - t_{0}$$

である。最後に、確認のため、電流を時間0からtmaxの範囲で積分すると、

$$Q_{tot} = \int_0^{t_{max}} I dt$$

= $-\frac{q\alpha_g}{2ln(b/a)} ln \frac{t_{max} + t_0}{t_0}$
= $-q\alpha_g$

を得る。したがって、発生した電荷と、誘起された電荷の帳尻は合っていることが分かる。

3.2 信号処理の方式

3.2.1 信号処理回路

一般的な信号処理回路は、前置増幅器、ポール・ゼロキャンセレーション回路、主増幅器としての、 整形増幅器、及び、信号の尖塔値を A-to-D 変換が完了するまで保持するためのピークホールド回路を 有している。

各部の動作を個別に議論したのち、全体の動作を SPICE³⁵ による回路解析を用いて示す。

³⁴このような信号の裾を「1/t テイル」という。信号の発生頻度高い場合には、信号のパイルアップの問題が発生する。パイル アップを除去するためには特別のポール・ゼロ補償が必要である (R.A.Bole, A.T.Hrisoho, and P.Rehak, "Signal shaping and tail cancellation for gas proportional detectors at high counting rates", Nucl. Instr. and Meth. 192(1982)365-274) ³⁵"Simulation Proportional detectors at high counting rates", Nucl. Instr. and Meth. 192(1982)365-274)

³⁵"Simulation Program, Integrated Circuit Emphasis", University of California, Berkeley

左図は、信号処理系に電荷を注入するための回路で ある。入力信号は、本来、放射線検出器の発生する 電荷信号であるが、ここでは、それを擬似的に発生 させるている。このような信号を「テストパルス」 と呼ぶ。電圧源は、*t* = 0 でゼロから *V*₀ まで遷移 するステップ関数である。対応するノートンの等価 回路は、

$$I_0(s) = \frac{V_0/s}{1/(sC_0)} = V_0C_0$$

を電流源とし、それに並列に容量 C_0 を負荷とした ものである。 電流源は、実時間では、 $i(t) = V_0 C_0 \delta(t)$ で表され

左図は、荷電増幅型の前置増幅器である。積分用の 容量*C*₁に並列に抵抗*R*₁を設けることによって、信 号を受信した後、自動的に出力信号は、そのベース ラインに復帰するようになっている。伝達関数は、 トランスインピーダンスゲインとして、

$$T_1(s) = -\frac{R_1}{1 + sC_1R_1}$$

である。信号源容量の影響は、前置増幅器の開ルー プゲインが高く維持されている限りにおいては無視 することができる。

左図の回路の伝達関数は、

る電荷インパルスである。

$$T_2(s) = \frac{R_3}{R_2 + R_3} \frac{1 + sC_2R_2}{1 + sC_2(R_2||R_3)}$$

である。 $C_2R_2 = C_1R_1$ とすることにより、 T_1 のポー ルと T_2 のゼロが相殺する。これを称して「ポール・ ゼロ補償(キャンセレーション)」という。 $C_2R_2 > C_2(R_2 \parallel R_3)$ であるから、 T_2 によって、前置増幅器 の出力信号の減衰時定数が短縮されることになる。

左図は、既出の非反転増幅器である。利得は、

$$T_3(s) = 1 + \frac{R_5}{R_4}$$

である。 例えば、*T*₂の直流減衰分に対応する利得 を回復するように設定すれば、

$$\frac{R_5}{R_4} = \frac{R_2}{R_3}$$

としておけばよい。

左図は、整形増幅器の回路ブロックである。ポール・ ゼロ補償回路と本回路ブロックを複合したものを整 形増幅器ということもある。伝達関数は、ローパス 特性を有しており、

$$T_6(s) = -\frac{R_7}{R_6} \frac{1}{1 + sC_7R_7}$$

である。 T_2 のポールと T_6 のポールを一致させて、 いわゆる「臨界減衰」の条件を満たすためには、 $C_7R_7 = C_2(R_2 || R_3)$ のようにすればよい。

総合応答は、 $I_0(s)T_1(s)T_2(s)T_3(s)T_4(s)T_5(s)T_6(s)$ で与えられるので、

$$V_0 \frac{C_0}{C_1} (1 + \frac{R_2}{R_3}) \frac{R_7}{R_6} \frac{T_M}{(1 + sT_M)^2} \quad \to \quad V_0 \frac{C_0}{C_1} (1 + \frac{R_2}{R_3}) \frac{R_7}{R_6} \frac{t}{T_M} e^{-t/T_M}$$

となる。ただし、 $T_M=C_2(R_2\|R_3)=C_7R_7$ である。また、 $R_5/R_4=R_2/R_3$ 、 $C_2R_2=C_1R_1$ を用いた。

上記回路ブロックにピークポールド回路を付加して、信号処理系の全体を示した。

回路定数等の詳細については、SPICE 記述を参照して欲しい。また、ピークホールド回路用の演算増 幅器には、電圧・電流変換形の演算増幅器を用いていることに注意すること。さらに、MOSFET をス イッチとして用いていることにも注目のこと。

以下に、上記回路図面から自動生成された信号処理回路の SPICE ネット記述を示す。

各行には、素子名、接続情報、パラメータの順に記述されており、全体として、回路図面と等価の記 述となっている。

.SUBCKT から.ENDS までは、サブサーキット記述と呼ばれるものであって、一定のまとまりのある 回路ブロックを定義したり、複数回の参照の便宜のために用いたりするものである。

.include によって、MOSFET の属性を記述した外部ファイルを参照するようになっている。

.print によって、出力の対象となるノードを指定している。

また、.tranによって、当該回路解析が時間領域での解析であること及び、解析の及ぶ最大時間幅、最小解析時間ステップ等を指定することができる。

さらに、SPICE ネット記述は、.END によって全体の記述の終了を示すようになっている。

* SPICE netlist written by S-Edit Win32 6.03 .SUBCKT op0 minus out plus Gnd R1 N1 out 5 TC=0.0, 0.0 e2 N1 Gnd minus plus 100000 .ENDS .SUBCKT opG minus out plus Gnd D1 Gnd OUT DIODE1 area=1 R2 Gnd OUT 100k TC=0.0, 0.0 g3 OUT Gnd minus plus 0.02 .ENDS * Main circuit: Module0 .include nmos1.mod C0 N3 vstep 1pF C1 N3 prout 0.5pF C2 prout N4 500p C7 N7 shout 100p C8 Gnd phout 100p D1 N1 phout DIODE1 area=1 M2 N1 N5 phout Gnd nmos1 L=2u W=22u Xop1 N3 prout Gnd Gnd op0 XOP2 N6 pzout N4 Gnd op0 XOP3 N7 shout Gnd Gnd op0 Xop4 phout N1 shout Gnd opG .print tran pzout .print tran prout .print tran vstep .print tran shout .print tran phout .print tran N5 R1 N3 prout 20Meg TC=0.0, 0.0 R2 prout N4 20k TC=0.0, 0.0 R3 Gnd N4 5k TC=0.0, 0.0 R4 Gnd N6 5k TC=0.0, 0.0 R5 N6 pzout 20k TC=0.0, 0.0 R6 pzout N7 1k TC=0.0, 0.0 R7 N7 shout 20k TC=0.0, 0.0 .tran 1
n $8\mathrm{u}$ v0 vstep Gnd pulse(0.0 4m 100n 10n 10n 9u 10u) v1 N5 Gnd pulse(0.0 5.0 0 10n 10n 1u 7u) * End of main circuit: Module0 .END

SPICE ネットリストに記述されたパラメータを拾って、信号処理系の利得を求めると、 $V_0 = 4 \ mV$ 、 $C_0 = 1 \ pF$ 、 $C_1 = 0.5 \ pF$ 、 $R_2 = 20 \ k\Omega$ 、 $R_3 = 5 \ k\Omega$ 、 $R_6 = 1 \ k\Omega$ 、 $R_7 = 20 \ k\Omega$ 、 $T_M = C_7 R_7 = 2 \ \mu s$ であるから、出力信号は、ピーキング時間が 2 μs であって、ピークにおける電圧値として、293 mVを得る。

実際に SPICE 処理系によって、回路の応答を調べると下図のようになる。

横軸は、時間軸であり、0から8 μ sをカバーしている。縦軸は電圧軸であり、上部のチャートでは、0 から 300 mV を、下部のチャートでは-40 から5 mV をカバーしている。上部のチャートには、整形 増幅器の出力(トレース1)と、ピークホールド回路の出力(トレース2)を示していある。トレース 1とトレース2は、 $t\approx 2 \mu s$ までは、正確に重なっているが、それ以降では、トレース2は、トレー ス1のピークの値を維持しつづける。 $t\approx 7 \mu s$ でトレース2は、トレース1に再び合流する。ピーク ホールド回路中のダイオードと並列に接続されている MOS スィッチが閉となり、ピークホールド回路 が、「ホールドモード」から「トラッキングモード」に切り替わったためである。

下部のチャートには、テストパルス入力用のステップ信号(トレース3)、荷電増幅器の出力信号(トレース4)、および、ポールゼロ・キャンセレーションの後、非反転増幅器によって増幅された信号 (トレース5)が示してある。テストパルスの電圧ステップは、4 mV であり、これが、-C₀/C₁ = -2 倍となって、荷電増幅器の出力に現われる。荷電増幅器の出力信号は、10 µs の減衰時定数を有してい るが、これが、ポールゼロ・キャンセレーション回路によって 2 µs の減衰時定数に変換されている。 信号処理回路は、検出器からの微弱な電気信号を、A-to-D変換³⁶に耐え得るほどに増幅された電圧 信号に変換する。同時に高精度のピークホールドが行えるように、周波数帯域に制限を加え、全体と して滑らかな信号波形を作り出している。

しかし、かかる周波数帯域の制限は、単に、ピークホールドのための便宜のために行っているので はなく、信号対雑音比を改善する目的のための方策なのである。

検出器の発生する信号は、一般に微弱であるため、物理現象としての回路雑音と競合することが多い。回路雑音には、電源や周囲の環境から混入する「電気雑音」と、回路や信号源に不可避的に付随 する「電子雑音」がある。

前者の「電気雑音」は、付加的な対処が可能であるが、後者については、回路設計における対策な くしては、それを低減することはできない。

そこで、信号処理系は、検出器としての性能を損なわない範囲において、低周波、及び、高周波の 信号成分に対して減衰特性を持つように設計されている。

電子雑音には、その発生原因よって分類すると、ショット雑音、熱雑音、フリッカ雑音などがある。 ショット雑音

ショット雑音とは、ダイオードの逆バイアス電流のような、検出器の漏れ電流に付随して発生する雑音である。キャリアーが相互に時間的な相関を持たずにドリフトする場合に生ずる雑音であることに特徴がある。ショット雑音は、漏れ電流を生じている電子素子に並列な電流源であって、雑音パワーが、

$$i_n^2 = 2qI_L A^2/Hz$$

で表せるものとして定義することができる。ただし、ここで*q*は、素電荷を表し、*I_L*は、当該雑音を発 生する素子の漏れ電流である。高電界下においてキャリアーによる電離増幅を利用したアバランシェ・ フォトダイオードでは、*q*として素電荷ではなく、それに増倍率 M を乗じた *qM* を*q*に代入する必要 がある。同一のキャリアーから発生した M 個のキャリアーは、強い相関をもっているからである。し たがって、同一の漏れ電流であっても、普通のフォトダイオードに比べてアバランシェ・フォトダイ オードの雑音は大きなものになることに注意する必要があ³⁷。

熱雑音

熱雑音は、キャリアーが抵抗体中のフォノンと散乱し合うことによって生ずるものであって、抵抗 体 *R* に直列な電圧源であって、雑音パワーが、

$$v_n^2 = 4kTR V^2/Hz$$

で表せるものとして、又は、抵抗体 R に並列な電流源であって、雑音パワーが、

$$i_n^2 = \frac{4kT}{R} A^2/Hz$$

で表せるものとして定義することができる。

フリッカ雑音

フリッカ雑音は、別名 1/f ノイズと呼ばれているものであって、電子素子がキャリアートラップを 有しているような場合に生ずる雑音である。MOSFET においては、酸化膜と半導体の界面にこのよ うな 1/f ノイズに関係するキャリアートラップが存在し、これによってゲートに直列な雑音電圧が発

³⁶ウィルキンソン型、逐次近似型、フラッシュ型などの類型がある。

 $^{^{37}}$ ただし、信号成分も M 倍されるわけだから、信号対雑音比では \sqrt{M} の改善が見込める。

生することが知られている。1/f ノイズは、MOSFET の場合には、ゲートに直列な電源であって、雑音パワーが、

$$v_n^2 = \frac{k_f I_D^{a_f}}{C_{ox} W L f} \quad V^2 / H z$$

のように表せることが知られている。 $k_f \varepsilon$ 「フリッカ雑音係数」、 $a_f \varepsilon$ 「フリッカ雑音指数」という。本来 1/f ノイズは I_D についての揺らぎとして生ずるものであるが、 g_m を介してゲート電圧の揺らぎを生ずるのである。雑音パワーの表式から、MOSFET のゲート面積を大きく採るとこによって、1/f 雑音は、低減できることが分かる。しかし、後述のキャパシタンス・マッチングの議論や、素子面積等のトレードオフの対象となる。JFET や BJT の 1/f ノイズは、一般的に MOSFET よりも低レベルであることが知られている³⁸。キャリアーの移動するチャンネルが半導体内部にあるため、そこでは結晶の完全性が良好であり 1/f ノイズに関係するキャリアートラップの密度が低いためと考えられる。したがって、放射線計測用の前置増幅器の初段のトランジスタは、MOSFET よりも JFET が望ましい。BJT は、一般に、ベース電流によるショット雑音が支配的となるため、それが実質的に問題とならないような、ピーキングタイムが 10 ~ 40 ns であって、時間測定に最適化された信号処理系の前置増幅器においては、その有用性を発揮することになる。

雑音に対する放射線計測回路の応答

電子雑音は、放射線検出器と放射線計測回路の協働作用によって生ずるものであるから、単純に検 出器に原因のある電子雑音と電子回路に原因のある電子雑音と割り切ることは、一般には誤りである。 以下、雑音源の具体例とその振る舞いについて分説する。

検出器中に生じたキャリヤーをドリフトさせるためには、検出器の電極間に電圧を印加する必要がある。この電圧は、下図に示すように、高抵抗 *R*_B を介して供給される。*R*_B の発生する熱雑音は、信 号源に等価な電流源のパワーとして、

$$i_n^2 = \frac{4kT}{R_B} \quad A^2/Hz$$

のように表すことができるから、雑音を低減する観点からは、R_Bは大きな値であることが好ましい³⁹。

一方、漏れ電流及び電離キャリヤー自身による電流のため*R_B* による電位降下が顕在化する虞もあるため、*R_B*は、雑音特 性と他の特性とのトレードオフの対象となる。

また、雑音電流を*C*₁ で積分しただけでは、前置増幅器の出 力における雑音パワーは、

$$V_n^2 = \frac{4kT}{R_B C_1^2 \omega^2}$$

となって、低周波で発散することになる。

そこで、次の図に示すように、容量 C_1 と並列に抵抗 R_1 を用いて低周波の発散を抑圧する手法が一般的に用いられている。この手法により、前置増幅器の出力での雑音パワーは、 $V_n^2 = \frac{4kT}{R_B} \frac{R_1^2}{1+C_1^2 R_1^2 \omega^2}$ となって、低周波での雑音パワーは、もはや発散することはなく、 $\frac{4kTR_1^2}{R_B}$ にとどまることになる。 $R_B = 5 M\Omega, R_1 = 20 M\Omega$ とすれば、 $\sqrt{V_n^2} = 1.13 \ \mu V / \sqrt{Hz}$ である。

³⁸MOSFET でも、nMOS に比べて pMOS のほうが良好な雑音特性を示すことが知られている。pMOS では、伝導チャン ネルが「burried-channel 化」する傾向にあるためであると考えられている。

³⁹過電流からの検出器の保護という立場からも、高抵抗が当然のこととして用いられている。

しかし、 R_1 自身も雑音の発生源である。抵抗 R_1 には、それと、並列に $i_n^2 = \frac{4kT}{R_1}$ の雑音電流源が付随すると考えることができる。したがって、前置増幅器の出力での雑音パワーは、

$$V_n^2 = \frac{4kTR_1}{1 + C_1^2 R_1^2 \omega^2}$$

であるから、これは、 i_{src} に並列に雑音電流源 $i_n^2 = \frac{4kT}{R_1}$ を付加したことと等価である。 $R_1 = 20 \ M\Omega$ とすれば、低周波では、 $\sqrt{V_n^2} = 0.56 \ \mu V / \sqrt{Hz}$ である。

上記 V_n^2 を周波数領域で積分すると、 $\int_0^\infty V_n^2 df = \frac{kT}{C_1}^\infty$ を得る。これは、「kT/C ノイズ」として知られているものであって、アナログ・スイッチを介して容量を充電する場合等に共通して見出されるものである。

入力部の信号源と並列に逆バイアスのダイオード を配置すると、このダイオードは、漏れ電流 (I_L) によってショット雑音を発生する。雑音源は、ダイ オードに並列(したがって、入力部の信号源にも並 列)に配置された $i_n^2 = 2qI_L$ の雑音パワーを有する 電流源として表すことができる。バイポーラトラン ジスタを前置増幅器の初段のトランジスタとして用 いる場合には、ベース電流 I_b が I_L に加算される。 $I_L = 25 nA$ のとき、前置増幅器の出力における低 周波での雑音パワーは、 $\sqrt{V_n^2} = 1.79 \ \mu V / \sqrt{Hz}$ で ある。

ここまでに議論した雑音源は、周波数依存性を持たず(ホワイトノイズ)、入力信号源に並列な等価雑 音源として表すことができるものである。これらの雑音は、それぞれ二乗和として寄与するため、

$$i_n^2 = 2qI_L + \frac{4kT}{R_B} + \frac{4kT}{R_1}$$

のようになる。 $I_L = 25 nA$ 、 $R_B = 5 M\Omega$ 、及び、 $R_1 = 20 M\Omega$ を仮定すると、 $\sqrt{i_n^2} = 0.11 pA/\sqrt{Hz}$ であって、この例では漏れ電流の寄与が支配的である。前置増幅器の出力における雑音パワーは、低周 波では、2.2 $\mu V/\sqrt{Hz}$ 程度であるが、高周波では、前置増幅器によって帯域制限が加えられるため減 衰する。雑音帯域は、信号帯域と一致しており $\frac{1}{2\pi C_1 R_1}$ Hz である。この帯域は、次に議論するゲー トに直列な雑音源に対しては妥当でないので注意を要する。さらに、低周波領域は、本来検出器から の信号にとって不要であるから、これらの領域の雑音成分を抑圧することは、信号対雑音比を改善す るために有効である。

前置増幅器に直列に配置された抵抗 (R_G) は、それ に直列に接続された電圧源を雑音源として伴う。ト ランジスタにおいても、実効的にベースに直列に接 続された抵抗に置き換えることができるような雑音 が存在する。これらの雑音電圧は、検出器容量 CD によって、電流に変換されるので、入力信号源に等 価な雑音源として、

$$i_n^2 = 4kTR_G C_D^2 \omega^2$$

のように表せる。 ちなみに、MOSFET では、 $R_G = \frac{2}{3g_m}$ 、バイポーラトランジスタでは、 $R_G = r_b + r_e/2$ のように表 すことができる。ここで、r_bは、ベース外部抵抗(ボンディングワイヤーその他の配線抵抗)とベー ス拡散抵抗(本来のベースと外部ベースを接続するための不純物拡散によって構成されている配線部 分)とからなる。r_e/2の項は、「エミッタ・ショットノイズ」とよばれるものであって、ショットノイ ズ $2qI_e \ \epsilon \ g_m = 1/r_e \ (r_e = \frac{kT/q}{L}$ の関係に注意すること。)によって、ベースの電圧に変換することに よって生ずるものである。

一方、前置増幅器の出力における雑音パワーは、

$$V_n^2 = \frac{4kTR_G C_D^2 \omega^2 R_1^2}{1 + C_1^2 R_1^2 \omega^2}$$

となるから、低周波では、雑音パワーはゼロに漸近するものの、高周波では、むしろ平坦な雑音パワー を示すことになる。この効果を、「前置増幅器は、容量性雑音をホワイト化する。」という。

したがって、前置増幅器だけでは、雑音電力の周波数領域での積分を有限の値にとどめることが原理 的に不可能であることが分かる。ちなみに、 $C_D = 200 \ pF$ 、 $C_1 = 0.5 \ pF$ 、 $R_G = 200 \ \Omega$ とすると、高 周波では、 $\sqrt{v_n^2} = \frac{C_D \sqrt{4kTR_G}}{C_1} \approx 0.72 \ \mu V / \sqrt{Hz} \ bar{vac}$ 高周波における一様な雑音パワーの存在 は、周波数領域においてこれを積分するとその値が発散することを意味する。

1/f ノイズは、R_Gの雑音を表すための電圧源と同様の取扱いが可能である。等価な電流源の雑音パ ワーは、

$$i_n^2 = 2\pi K_f C_D^2 \omega$$

である。ただし、 $\frac{k_f I_D^{a_f}}{C_{ox}WL}$ を K_f と略記した(以下同様)。前置増幅器の出力における雑音パワーは、

$$V_n^2 = \frac{2\pi K_f C_D^2 R_1^2 \omega}{1 + C_1^2 R_1^2 \omega^2}$$

であるから、これを周波数領域で積分すると、その値は、対数的な発散ではあるが、R_Gに起因する熱 雑音と同様に発散してしまう。

以上の議論に依れば、信号対雑音比を改善するためには、信号帯域をはずれた低周波領域を抑制する とともに、高周波領域を抑制するような回路が好ましいことが分かる。特に、高周波領域の抑圧は、必 須である。

放射線計測回路では、ポール・ゼロキャンセレーション回路により、低周波領域の雑音信号の抑制を 行い、積分回路により、高周波領域の信号の抑制を行っている。前置増幅器の減衰時定数 C_1R_1 を無 限大とすると、ポールゼロキャンセレーション回路は、微分回路 $\frac{s}{s+s_0}$ に一致するため、これに積分 回路 $\frac{1}{s+s_0}$ を付加した当該回路方式を「CR(微分)-RC(積分) 整形回路」という。当該積分回路を 導入することによって、 R_G 、ないし、 K_f/f に起因する雑音パワーの周波数領域における積分を収束 させることができるのである。

以下に、雑音源と、それらの雑音を抑制するための機能を備えた信号処理系を示す。この図面は、す でに議論した「信号処理系の全体」から、ピークポールド回路を除去する一方、雑音源を明示的に付 加したものに過ぎない。

以下に、上記回路図面に対応した SPICE の入力データを示す。明示されていない雑音源として、ダイ オード D₁の漏れ電流があるが、これは、25 nA としてある。 * SPICE netlist written by S-Edit Win32 6.03 .SUBCKT op0 minus out plus Gnd R1 N1 out 5 TC=0.0, 0.0 e2 N1 Gnd minus plus 100000 .ENDS * Main circuit: Module0 .include diode1.mod .noise v(prout) isrc .ac DEC 5 1k 1Meg CD N1 Gnd 200pF C1 N1 prout 0.5pF C2 prout N4 500p $\,$ C7 N7 shout 100p D1 N5 N1 DIODE1 area=1 isrc N1 Gnd0.0 AC $1.0\ 0.0$ Xop1 N3 prout Gnd Gnd op0 XOP2 N6 pzout N4 Gnd op0 XOP3 N7 shout Gnd Gnd op0 .print noise inoise onoise R1 N1 prout 20Meg TC=0.0, 0.0 R2 prout N4 20k TC=0.0, 0.0 R3 Gnd N4 5k TC=0.0, 0.0 R4 Gnd N6 5k TC=0.0, 0.0 R5 N6 pzout 20k TC=0.0, 0.0 R6 pzout N7 1k TC=0.0, 0.0 R7 N7 shout 20k TC=0.0, 0.0 RB Gnd N1 5Meg TC=0.0, 0.0 RG N1 N3 200 TC=0.0, 0.0 v2 Gnd N5 5.0 * End of main circuit: Module0 .END

雑音の解析は、AC解析の一環としておこなわれるため、その旨の指定 (.ac) が必要である。また、雑音評価の対象となるノード (prout、pzout、shout 等)、及び、「雑音等価な電源」の指定が必要である (.noise)。ここでは、検出器に並列な電流源 (isrc) を指定している。

横軸は、周波数を表す対数軸あって、1 kHz から 100 MHz をカバーしている。第一のトレース は、入力等価雑音電流であって、縦軸は、0 から 230 pA/ \sqrt{Hz} をカバーしている。低周波での値は、 0.11 pA/ \sqrt{Hz} である。第二のトレースは、前置増幅器の出力における雑音電圧をであって、縦軸 は、0.7 から 2.2 $\mu V/\sqrt{Hz}$ をカバーしている。低周波での値は、2.2 $\mu V/\sqrt{Hz}$ であり、高周波では、 0.73 $\mu V/\sqrt{Hz}$ に漸近する。第三のトレースは、ポール・ゼロキャンセレーションの後の非反転増幅器 の出力における雑音電圧であって、縦軸は、2.2 から 3.7 $\mu V/\sqrt{Hz}$ をカバーしている。低周波では、前 置増幅器における値を維持しているが、高周波では、3.67 $\mu V/\sqrt{Hz}$ と、かえって高い値のレベルを示 す。ポール・ゼロ補償回路は、微分的な作用を果たすため、高周波が強調されるからである。第四のト レースは、最終段のローパスフィルターの出力における雑音電圧であって、縦軸は、0 から 46 $\mu V/\sqrt{Hz}$ をカバーしている。低周波では、44.1 $\mu V/\sqrt{Hz}$ の値を示し、40 kHz 付近で最大値 46 $\mu V/\sqrt{Hz}$ 値を示し、それよりも高周波では、ゼロに漸近していく。

等価雑音電子数

等価雑音電子数とは、出力雑音に対応する入力電荷量を素電荷の個数で表したものである。 サンプル・ホールド回路の直前までのところでの電圧雑音のパワーは、

$$V_n^2 = (i_n^2 + v_n^2 C_D^2 \omega^2) |H(\omega)|^2$$

である。ただし、既出の回路例を参照して

$$i_n^2 = 2qI_L + 4kT(\frac{1}{R_B} + \frac{1}{R_1})$$
$$v_n^2 = 4kTR_G + \frac{K_f}{f}$$
$$H(\omega) = \frac{e/T_M}{(i\omega + 1/T_M)^2}$$

とする。 $H(\omega)$ は、 $\int_{-\infty}^{\infty} H(\omega)e^{i\omega T_M} df = 1$ となるように正規化⁴⁰してある。つまり、便宜的に電荷 qクーロンを入力するとqボルトのピークを有する信号が得られるようにしてある。そこで、出力雑音 は、それを素電荷で正規化すれば直接雑音電子数と読み替えることができる。具体的には、

$$enc = \frac{1}{q} \sqrt{\int_0^\infty V_n^2 df}$$

を評価すれば良い。

被積分関数のω依存性によって三つの成分に分けて考察しようと思う。

第一の成分は、ショット雑音類似の成分である。被積分関数が ω の偶関数であることを利用して積分範囲を $(-\infty,\infty)$ とすることにより積分の実行が容易になる。すなわち、

$$V_{n1}^2 = \frac{1}{2} \int_{-\infty}^{\infty} i_n^2 |H(\omega)|^2 df$$
$$= \frac{e^2}{8} i_n^2 T_M$$

のように評価することができる。雑音パワーが、ピーキングタイム *T_M* に比例しているという特徴がある。

第二の成分は、R_Gに係る雑音の成分であって、

$$V_{n2}^2 = \frac{1}{2} \int_{-\infty}^{\infty} 4kTR_G C_D^2 \omega^2 |H(\omega)|^2 df$$
$$= \frac{e^2}{8} \frac{4kTR_G C_D^2}{T_M}$$

のようになる。雑音パワーが、ピーキングタイム T_M に反比例しているという特徴がある。 第三の成分は、1/fのノイズに係る成分であって、

$$V_{n3}^2 = \int_0^\infty 2\pi K_f C_D^2 \omega |H(\omega)|^2 df$$
$$= \frac{e^2}{2} K_f C_D^2$$

のようになる。 雑音パワーが、ピーキングタイム T_M に依存しないという特徴がある。ここでは、被 積分関数は、奇数関数であるから、本来の定義にしたがって積分範囲を $(0,\infty)$ とした。

ピーキング・タイムの最適化

雑音成分には、 T_M に比例する成分と、反比例する成分と、さらに、それに依存しない成分とがある ことが分かった。

したがって、第一の成分と第二の成分との関係においては、最適な T_M が存在して

$$T_M = \sqrt{\frac{4kTR_GC_D^2}{2qI_L + 4kT/R_B + 4kT/R_1}}$$

となる。このとき、雑音パワーの最小値は、

$$\frac{e^2}{4}C_D\sqrt{4kTR_G(2qI_L+4kT/R_B+4kT/R_1)} + \frac{e^2}{2}K_fC_D^2$$

である。第一項が *C_D*に比例するのに対して、第二項は、*C²_D*に比例しているため、信号源容量の大き な検出器では、1/*f* 雑音が支配的な雑音源となることも有り得ることが分かる。

キャパシタンス・マッチング

先に、ゲートに直列に配置された抵抗 *R_G*を導入して入力等価雑音への影響を調べた。MOSFET 等では、*R_G*は、現実の回路要素として存在するのではなく、トランスコンダクタンス *g_m*を介し実効的に作用するものである。具体的には、

$$R_G = \frac{2}{3g_m}$$

と表すことができることについては、すでに言及した。したがって、 g_m を大きくすれば、雑音成分 V_{n2}^2 を限りなく低減することができるようにも考えられる。 g_m を大きくするためには、ドレイン電流 を増加させる方法と、トランジスタのサイズ W/L比を大きくすることが考えられる。

半導体プロセスの制約から L については自由度が制約されるのが普通であるから L を一定として、 W を大きくするとともに、ドレイン電流もこれに比例して大きくすると、 g_m は、 $\sqrt{2I_Dk_pW/L} \propto W$ に比例するして増大させることができる。一方、トランジスタのゲートに付随する容量 (C_G) は、ゲー ト面積 WL に比例するので、結局 $g_m \propto C_G$ である。さらに、ゲート容量 C_G は、実効的には C_D に繰 り込まれることになるから、 C_D を $C_D + C_G$ と読み替えを行う。すると、前記第二の雑音成分 V_{n2}^2 は、

$$V_{n2}^2 = \frac{8kT}{3g_m} (C_D + C_G)^2$$
$$\propto \frac{8kT}{3} \frac{(C_D + C_G)^2}{C_G}$$

であって、 $C_G = C_D$ のときに(この条件を「キャパシタンス・マッチング」という。)最小値をとる⁴¹。 したがって、むやみに g_m を大きく採ってもかえって信号対雑音比を悪化させることがあることが分 かる。

1/fノイズの成分についても、 $K_f \propto \frac{1}{C_G}$ であるから、同様の議論が成立し、 $C_D = C_G$ の条件によって、信号対雑音比が最適化されることが分かる。

トランスフォーマ・カップリング

トランスフォーマ・カップリングとは、検出器と前置増幅器の間にトランスを介在させることによ り信号対雑音比を改善する手法である。

まず、トランスが介在するために、前置増幅器の側からみた信号源インピーダンスがどのように見 えるかについて検討する。すなわち、トランスの四端子回路の第一のポートにインピーダンス Z₁ を 取付け、第二のポートで測定したインピーダンスを求めてみる。電流は、四端子回路に向かう方向を

⁴¹この議論は、バイポーラトランジスタを入力部に配置した前置増幅器の場合には、該当しないことに注意されたい。バイ ポーラトランジスタの gm は、専らエミッタ電流に支配されており、エミッタ面積を大きくしても何ら効果がないからである。 もっとも、rb が減少することによる効果は有り得る。

正の向きとして定義されるから、 第一のポートにおける電圧は、 $V_1 = -Z_1 I_1$ である。そこで、イン ピーダンスマトリックスを用いて、

$$\begin{pmatrix} -Z_1I_1\\V_2 \end{pmatrix} = i\omega \begin{pmatrix} L_1 & M\\M & L_2 \end{pmatrix} \begin{pmatrix} I_1\\I_2 \end{pmatrix}$$

のように表すことができる。上記関係式から I1 を消去することにより、

$$\frac{V_2}{I_2} = Z_1 \frac{L_2}{L_1} \frac{1 + i\omega(L_1L_2 - M^2)/(Z_1L_2)}{1 + Z_1/(i\omega L_1)}$$

$$\to Z_1 \frac{L_2}{L_1}$$

を得る。上記の第二式においては、理想的なトランス⁴²では、 $L_1L_2 = M^2$ であること、及び、 $\omega \to \infty$ 、すなわち、高周波近似とを用いた。ここで問題としているような放射線検出器においては、 $Z_1 \approx 1/(i\omega C_D)$ となるから、第二のポートからは、容量が C_DL_1/L_2 に見えることになるので、 $L_1/L_2 < 1$ のように設定されていれば、第二のポート(すなわち、前置増幅器の側)からは、実際の容量よりも小さな容量が見えることになる。

次に、放射線検出器が発生した信号がどのように見えるかについて検討する。すなわち、第二のポートには抵抗 *R_L* を、第一のポートには、電流源 *I_s* を、とりつけると、

$$\begin{pmatrix} V_1 \\ -I_2 R_L \end{pmatrix} = i\omega \begin{pmatrix} L_1 & M \\ M & L_2 \end{pmatrix} \begin{pmatrix} I_s \\ I_2 \end{pmatrix}$$

が成り立つので、

$$\begin{array}{rcl} I_2 & = & -\frac{i\omega M}{R_L + i\omega L_2} \\ & \rightarrow & -\sqrt{L_1/L_2} \end{array}$$

を得る。上記第二式においては、理想トランスの関係式、 $L_1L_2 = M^2$ と、 $R_L \to 0$ の近似⁴³とを用いた。したがって、信号成分は、 $\sqrt{L_1/L_2}$ のファクターだけ変更を受けることが分かる。

そこで、雑音の第二成分 V_{n2}^2 において、 $C_D \rightarrow C_D L_1/L_2$ 、 $H(\omega) \rightarrow \sqrt{L_2/L_1} H(\omega)$ の置き換えを行うことによって、等価雑音電子数を評価することができる。 $H(\omega)$ の置き換えは、対応する h(t)のピークが1であるべしという要請によるものである。

具体的には、

$$V_{n2}^2 = \frac{e^2}{8} \frac{4kTR_G C_D^2}{T_M} \frac{L_1}{L_2}$$

となるから、 $\frac{L_1}{L_2} < 1$ とすることによって、トランスの巻き線比の分だけ雑音パワーが低減されることが分かる。

検出器のセグメント化による雑音の低減

検出器のセグメント化とは、本来一体である検出器を、分割することによって、検出器容量を分散 し、これによって容量性雑音の影響を低減するものである。セグメント化には、二つの手法がある。

第一の手法は、検出器をN個の同一面積のセグメントに分割し、分割した要素の各々に前置増幅器 を取付け、出力部において信号を足し合わせるものである。以下、並列方式という。

第二の手法は、同様に検出器を分割するのであるが、今度は、検出器を直列に接続して、一個の前 置増幅器で読み出すものである。以下、直列方式という。

⁴²磁束の漏れがないトランスのことをいう。

⁴³荷電増幅器や電流増幅器のように低入力インピーダンスの増幅器を用いる場合にこの近似が妥当する。

並列方式においては、セグメントごとの雑音パワーは、

$$\begin{aligned} \dot{r}_n^2 &= 2q\frac{I_L}{N} + 4kT(\frac{1}{R_B} + \frac{1}{R_1}) \\ \dot{r}_n^2 &= 4kTR_G\frac{C_D^2}{N^2} \end{aligned}$$

となるから、Nのセグメントについて合計すると、

$$\begin{array}{lll} i_n^2 & = & 2qI_L + 4kTN(\frac{1}{R_B} + \frac{1}{R_1}) \\ v_n^2 & = & 4kTR_G\frac{C_D^2}{N} \end{array}$$

となる。結局、並列方式においては、検出器容量が実効的に $\frac{1}{\sqrt{N}}$ に見えるので、信号源容量の大きな 検出器について有効性を発揮する。しかし、ショット雑音については、効果がなく、また、バイアス抵 抗等に起因する雑音については、かえって拡大されることになる。

次に、直列方式について議論する。セグメントごとの漏れ電流に起因する雑音パワーは、 $2q\frac{I_L}{N}$ であることは同様であって、前置増幅器には、 $2q\frac{I_L}{N^3}$ のように伝播する⁴⁴。したがって N 個のセグメントについて和をとれば、 $2q\frac{I_L}{N^2}$ である。

バイアス抵抗 R_B による雑音の効果は、検出器セグメントによる直列容量によって分割されるため、検出器セグメントの位置依存する。すなわち、接地側から j 番目の検出器セグメントのバイアス抵抗による雑音電流は、 $\frac{4kT}{R_B}\frac{j^2}{N^2}$ のように前置増幅器に伝播するから、j について和をとれば、 $\frac{4kT}{R_B}\frac{(N+1)(2N+1)}{6N}$ である。

ー 検出器の容量は、前置増幅器の側から見れば、 $\frac{C_D}{N^2}$ に見えること⁴⁵、および、各セグメントでの信号 成分の $\frac{1}{N}$ が前置増幅器に到達することを考慮して、雑音成分についても N^2 分だけスケールさせて、

$$\begin{split} i_n^2 &= 2qI_L + \frac{4kT}{R_B} \frac{N(N+1)(2N+1)}{6} + \frac{4kTN^2}{R_1} \\ v_n^2 &= 4kTR_G \{\frac{C_D}{N}\}^2 \end{split}$$

を得る。したがって、雑音の観点からは検出器容量が $\frac{C_D}{N}$ に見えることになり、並列方式との比較で、 さらに信号源容量の大きな検出器への適用において有効性を発揮する。

しかし、ショット雑音においては、改善がなく、バイアス抵抗等による雑音については、さらに悪化 することになるので、トレードオフの検討が必須である。

タイム・ドメイン解析

タイム・ドメイン解析とは、 $H(\omega)$ の代わりに、その逆フーリエ変換である実時間での応答関数 h(t)を用いて雑音の評価を行うことをいう。

周波数領域での積分がややこしいようなものであっても、実時間の関数であれば、簡単に実行でき るようなものが有り得る。たとえば、折れ線で表された応答関数などが該当する。

そこで、実時間の応答関数 h(t) を用いた解析手法について議論することとする。

⁴⁴信号源に並列に容量 $\frac{C_D}{N}$ が、信号源に直列に容量 $\frac{C_D}{N(N-1)}$ が配置されていると考えれば良い。 ⁴⁵ C_D/N の容量が N 個直列になっているから。
等価雑音電子数を求めるためには、 $\frac{1}{2} \int_{-\infty}^{\infty} |H(\omega)|^2 dt$ 、及び、 $\frac{1}{2} \int_{-\infty}^{\infty} \omega^2 |H(\omega)|^2 dt$ なる積分を評価 する必要がある。 $H(\omega)$ は、フーリエ変換によって $\int_{0}^{\infty} h(t)e^{-i\omega t}$ のように、実時間領域の関数h(t)と 関係づけることができる。h(t)についての積分の下限が 0 であるのは、t < 0 でh(t) = 0と仮定した ためであって、t < 0 で non-zero の値をとるのであれば積分範囲を拡大する必要がある。 したがって、

$$\begin{split} \frac{1}{2} \int_{-\infty}^{\infty} |H(\omega)|^2 df &= \frac{1}{2} \int_{-\infty}^{\infty} df \int_{0}^{\infty} h(t_1) e^{-i\omega t_1} dt_1 \int_{0}^{\infty} h(t_2) e^{i\omega t_2} dt_2 \\ &= \frac{1}{2} \int_{0}^{\infty} h(t_1) dt_1 \int_{0}^{\infty} \delta(t_2 - t_1) h(t_2) dt_2 \\ &= \frac{1}{2} \int_{0}^{\infty} \{h(t)\}^2 dt \end{split}$$

を得る⁴⁶。同様に、

$$\begin{aligned} \frac{1}{2} \int_{-\infty}^{\infty} \omega^2 |H(\omega)|^2 df &= \frac{1}{2} \int_{-\infty}^{\infty} df \int_0^{\infty} \frac{dh(t_1)}{dt_1} e^{-i\omega t_1} dt_1 \int_0^{\infty} \frac{dh(t_2)}{dt_2} e^{i\omega t_2} dt_2 \\ &= \frac{1}{2} \int_0^{\infty} \frac{dh(t_1)}{dt_2} dt_1 \int_0^{\infty} \delta(t_2 - t_1) \frac{dh(t_2)}{dt_2} dt_2 \\ &= \frac{1}{2} \int_0^{\infty} \{\frac{dh(t)}{dt}\}^2 dt \end{aligned}$$

を得る。結局、時間領域の応答関数を知っていれば、雑音評価の目的のためには足りることになる。 1/f 雑音の時間領域での評価方法が問題となるが、1/f 雑音については、時間領域での評価方式の方 が、一般的には、むしろ複雑である。

評価すべき積分は、

$$\int_{0}^{\infty} \frac{K_{f}}{f} |H(\omega)|^{2} df = \int_{0}^{\infty} d\tau_{1} h(\tau_{1}) \int_{0}^{\infty} d\tau_{2} h(\tau_{2}) \int_{0}^{\infty} d\omega K_{f} \omega e^{-i(\tau_{1}-\tau_{2})\omega}$$
$$= \int_{0}^{\infty} d\tau_{1} \int_{0}^{\infty} d\tau_{2} K_{f} C_{D}^{2} h'(\tau_{1}) h(\tau_{2}) \int_{0}^{\infty} d\omega \frac{1}{i} e^{-i(\tau_{1}-\tau_{2})\omega}$$

である。第二式においては、τ1 について部分積分を行った。ω についての積分は、超関数を含む形で、

$$\int_0^\infty d\omega \frac{1}{i} e^{-i(\tau_1 - \tau_2)\omega} = -\mathbf{v} \mathbf{p} \{ \frac{1}{\tau_1 - \tau_2} \} - i\pi \delta(\tau_1 - \tau_2)$$

のように表せることが知られている。 $\mathbf{vp}\{\frac{1}{x}\}$ は、この関数を被積分関数とするときには、原点の近傍 を除外して積分すべきこと (これを「主値積分」という。)を表している。

δ関数に関係する部分について着目すると、

$$\int_{0}^{\infty} d\tau_1 \int_{0}^{\infty} d\tau_2 K_f C_D^2 h'(\tau_1) h(\tau_2) \{ -i\pi \delta(\tau_1 - \tau_2) \} = -i\pi \int_{0}^{\infty} d\tau K_f C_D^2 h'(\tau) h(\tau)$$

= 0

となるから、結局、

$$I_f = -\int_0^\infty d\tau_1 \int_0^\infty d\tau_2 K_f C_D^2 h'(\tau_1) h(\tau_2) \mathbf{vp} \{\frac{1}{\tau_1 - \tau_2}\}$$

$$^{46} \int_{-\infty}^\infty e^{-i\omega\tau} df = \delta(\tau) \ \mathfrak{CBS}_\circ$$

が、時間領域での所要の積分を与えることが分かる。

$$h(t) = \frac{t}{T_M} e^{1-t/T_M}$$
の場合について積分を実行してみることにする。

$$I_f = -\mathbf{vp} \int_0^\infty d\tau_1 \int_0^\infty d\tau_2 \frac{e^2 K_f C_D^2 (T_M - \tau_1) \tau_2 e^{-(\tau_1 + \tau_2)/T_M}}{T_M^3 (\tau_1 - \tau_2)}$$

において、変数変換、 $\tau_1 - \tau_2 = T_M u, \tau_1 + \tau_2 = T_M v$ の変換をおこなうと、Jacobian が $\frac{\partial(u, v)}{\partial(\tau_1, \tau_2)} = \frac{2}{T_M^2}$ であること、および、積分範囲についてu + v > 0, v - u > 0であることを考慮して、

$$I_f = -\mathbf{vp} \int_0^\infty dv \int_{-v}^v du \frac{e^2 K_f C_D^2 (1 - \frac{v+u}{2}) \frac{v-u}{2} e^{-v}}{2u}$$

となる。被積分関数のうち、*u* についての奇関数である項は、主値積分によって消えてしまうので、 結局、

$$I_f = \int_0^\infty \frac{e^2 K_f C_D^2}{2} v e^{-v} dv$$
$$= \frac{e^2 K_f C_D^2}{2}$$

となる。この結果は、確かに、周波数領域での計算に一致している。

Gated-integrator の取扱い

Gated-integrator とは、入力信号を一定時間積分したものを出力とするものである。一般には、光 電子増倍管の出力信号、荷電増幅器の信号にポールゼロキャンセレーションを施した信号、電流増幅 器の出力信号などは、Gated-integrator の入力信号となり得る。

入力信号の時間領域での波形をt < 0では、0であって、t > 0では、 $\frac{Q_0}{t_d} exp(-t/t_d)$ と置く。すなわち、入力信号は、積分すると電荷 Q_0 となるような減衰時定数 t_d を有する信号である。

Gated-integrator による積分ゲートが $(t, t+\tau)$ に有るとすると、 $t < -\tau$ では、0が、 $-\tau < t < 0$ の範囲では、 $Q_0\{1 - exp(-\frac{t+\tau}{t_d})\}$ が、さらに、 $0 < t < \infty$ の領域では、 $Q_0\{1 - exp(-\frac{\tau}{t_d})\}exp(-\frac{t}{t_d})$ が Gated-integrator から出力される。Gated-integrator の出力は、t = 0では、最大値 $Q_0\{1 - exp(-\frac{\tau}{t_d})\}exp(-\frac{\tau}{t_d})\}exp(-\frac{\tau}{t_d})$ をとる。

そこで評価すべき正規化された応答関数 h(t) として、

$$\begin{aligned} h(t) &= 0 \ (t \leq -\tau) \\ &= \frac{1 - exp(-t/t_d)}{1 - exp(-\tau/t_d)} \ (-\tau < t < 0) \\ &= exp(-\frac{t}{t_d}) \ (0 \leq t < \infty) \end{aligned}$$

を得る。これを用いて時間領域での雑音の評価を行うことができることになる。 実際に積分を実行すると、

$$\frac{1}{2} \int_{-\tau}^{\infty} \{h(t)\}^2 dt = \frac{\tau - t_d \{1 - exp(-\tau/t_d)\}}{2\{1 - exp(-\tau/t_d)\}^2}$$

$$\frac{1}{2} \int_{-\tau}^{\infty} \{h'(t)\}^2 dt = \frac{1}{2t_d \{1 - exp(-\tau/t_d)\}}$$

となる。 $\tau \gg t_d$ の近似で、第一の積分は、 $\frac{\tau}{2}$ に、第二の積分は、 $\frac{1}{2t_d}$ の漸近する。したがって、このとき、雑音成分 i_n^2 を制限する因子と、雑音成分 v_n^2 を制限する因子は、別個独立のものとなっていることに注目のこと。

なお、入力信号の波形に対応するフーリエ変換 $\frac{Q_0/t_d}{i\omega + 1/t_d}$ と、Gated-integrator に対応するフーリエ変換 $\frac{1 - exp(-i\omega\tau)}{i\omega}$ 、及び、正規化因子 $\frac{1}{Q_0\{1 - exp(-\frac{\tau}{t_d})\}}$ を考慮した周波数領域での積分

$$\begin{aligned} \frac{1}{2} \int_{-\infty}^{\infty} |H(\omega)|^2 df &= \frac{1}{2\{1 - exp(-\tau/t_d)\}^2} \int_{-\infty}^{\infty} \frac{|1 - exp(-i\omega\tau)|^2}{\omega^2} \frac{1/t_d^2}{|i\omega + 1/t_d|^2} df \\ \frac{1}{2} \int_{-\infty}^{\infty} \omega^2 |H(\omega)|^2 df &= \frac{1}{2\{1 - exp(-\tau/t_d)\}^2} \int_{-\infty}^{\infty} |1 - exp(-i\omega\tau)|^2 \frac{1/t_d^2}{|i\omega + 1/t_d|^2} df \end{aligned}$$

は、確かに上記時間領域での評価に一致している。

このように、信号処理系の後段において、Gated-integrator によって積分を行うかあるいは、ロー パスフィルターによって積分を行うかは、ある程度、技術的な選択の問題であって、択一的選択によっ て同等の雑音除去の効果を得ることが可能である。

4 参考図書

(1) 柳沢健、基礎電子回路(アナログ編)、丸善株式会社

(2) 浅田 邦博、アナログ電子回路(VLSI 工学へのアプローチ)、(株) 昭晃堂

(3) P.R.Gray and R.G.Mayer、アナログ集積回路設計技術(上、下)、培風館

(4) Horowitz and Hill, The art of electronics, Cambridge university press

(5) Guillermo Gonzalez, Microwave Transistor Amplifiers, Analysis and Design, Prentice-Hall

(6) G.F.Knoll、放射線計測ハンドブック、日刊工業新聞社

(7) V. Radeka, Low-noise techniques in detectors, Ann. Rev. Nucl. Part. Sci. 38 (1988) 217-277

レポート課題

第1問から第3問までの各課題について解答して下さい。

第1問

次の A.、B. の課題のうちいずれかを選択して解答して下さい。

設問 A.

ユニティーゲインバッファーを用いた Sallen-Key 型ローパスフィルターの伝達関数を求めて下さい。 合わせて、ユニティーゲインバッファーを用いた Sallen-Key 型ハイパスフィルターの伝達関数を求め て下さい。Sallen-Key 型ハイパスフィルターとは、Sallen-Key 型ローパスフィルターにおいて、R と C の役割を入れ替えたものをいいます。

設問 B.

負帰還の作用・効果について論述して下さい。

第2問

次の A.、B. の課題のうちいずれかを選択して解答して下さい。

<u>設問 A.</u>

テキストに記載した FET を用いた移相形の RC 発振回路につき、位相条件、及び、電力条件を考慮 することにより、発振周波数、及び、FET のトランスコンダクタンスに課せられる条件を求めて下さ い。合わせて、ナイキスト軌跡の概略を描く事により特性方程式との関係についても考察して下さい。

設問 B.

帰還回路の安定性について論述して下さい。

第3問

次の A.、B. の課題のうちいずれかを選択して解答して下さい。 設問 A. 以下の条件の下に、等価雑音電子数を求めて下さい。

$$i_n^2 = 2qI_L$$

$$v_n^2 = 4kTR_G + K_f/f$$

$$H(\omega) = \frac{e^2}{4T_M^2} \frac{1}{(i\omega + 1/T_M)^3}$$

なお、信号源容量は、 C_D とします。

<u>設問 B.</u>

等価雑音電子数を低減する手法について論述して下さい。

以上