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Abstract

The basics of an integrated circuit are described with special emphasis placed on a charge-measurement
system. Starting with an outline of a fine CMOS technology, the discussion moves to a practical imple-
mentation of circuits.
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7 Design of the CMOS charge-sensitive preamplifier
7.1 Input FET

The performance of the preamplifier is predom-
inantly determined by the characteristics of the
input FET. It is very important to set the pa-
rameters of the input FET so as to match the
required specifications.
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This section concentrates on procedures to set
parameters for the input FET as well as a de-
tailed description of the operation modes of the
MOSFET.
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7.1.1 Strong inversion versus weak inversion

00000000 FETOOOOO0O0O000000 Th(.% behavior of the MOSFET in the satur@tlon
region can be approximated in terms of either
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transconductance is written as
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The charge-measurement system is required to

have a high transconductance for the input FET
DO0d0noodiooodion FETODOD 4 grder to suppress the series noise contribution,

boboodooooooooudgoon DVVD 00U which is manifested by the detector capacitance.
0000000000 0oOoOoOoOoooon T OO0 It might appear to be true that the transcon-

O000000000000000000000 ductance could be taken as large as required by

00000000000000000 employing a larger W/L, so long as the strong-
inversion approximation can be applied.
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Figure 1: g, and Ip in terms of Cg.
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7.1.2 Procedures for optimization
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where we find that g,, is proportional to Cq. Fig.
1 shows the relations for g, versus Cg and Ip
versus Cq, where it is provided that C,, = 2.7
1073 F/m?, p =188 x10~4m?/Vs, L = 0.6 um,
and n = 1.85.

Assuming that the detector’s capacitance Cp
and the leakage current I; are given, the
bias/feed-back resistors are so chosen as to sat-
isfy 2qI;, = 4kT(1/Rp + 1/R;), and g,, and Cg
are related to each other as described in §7.1.1,
we obtain for the equivalent noise electrons and
the peaking time as follows:

2kT
< (Cp +Ca)y| 5 —qlL, and
q 39m
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Figure 2: Enc and peaking time in terms of C¢ for I, =1 nA.
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respectively. Fig. 2 and Fig. 3 show enc and
Ty as a function of Cg, where Cp is assumed
to be 10 pF for both figures, and I, is 1 nA and
10 nA for Fig. 2 and Fig. 3, respectively. The
noise minimum can be found at Cg = Cp in
accord with the capacitance-matching condition.
You are aware that the optimum peaking time is
shortened for a larger leakage current.

By examining the figure, we can identify whether
a given specification for the electronic noise is
reasonably achievable or not. Even if the noise
level might appear to satisfy the requirement,
the requirement for the power consumption could
provide another hurdle, or the too-slow peaking
time could be inappropriate to raise a pile-up or
a time-resolution issue. These bounds could be
resolved in terms of optimization.
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Figure 3: Enc and peaking time in terms of C¢ for I, = 10 nA.

7.2 Open-loop gain

7.2.1 Charge collection efficiency
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The open-loop gain of the amplifier is defined as
the bare gain of the amplifier without any nega-
tive feedback.

Provided that the feedback capacitance of the
charge sensitive amplifier is C'y, and the open-
loop gain is A, the input impedance of the am-
plifier can be explained by the so-called the Miller
effect, which yields

Cf(l + A)

coopooDooOoDOOoOoOooboooDDoDODO Cp
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Hence, the fraction of charge generated in the
detector medium and absorbed by C is

Cf(l JrA)
Cp +Cf(1 -|-A)7
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where C'p is the detector capacitance, as usual.
In order to increase the above-mentioned frac-
tion, it is required to set the open-loop gain,
A, to a very high value. For example, if we
take Cp = 10 pF, Cy = 0.2 pF, and a charge-
collection efficiency of 99%, we must set the open-
loop gain to A = 4950.



7.2.2 Cascode output
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Since the MOSFET is sort of a voltage-to-current
amplifier, it’s gain is in general presented in
terms of the transconductance. The open-loop
gain as a voltage-to-voltage amplifier is defined
to be A = g, x74.

The demands to set large values for g,, and rq4
contradicts to each other. A large g,, is attained
by increasing the drain current as well as employ-
ing a shorter L, which makes it easy to lower the
value of ry.

The parameter A\, which was discussed in §2, can

0.15% 1076

be ,for example, written as . Hence,

we can evaluate r4 as 48 k€2 under the conditions
Vps = 0.8 V and I; = 100 pA. On the other
hand, the transconductance is 2.16 mS under
the weak inversion approximation with n = 1.85.
The open-loop gain is 104, which is too small to
reach the require value of 4950.

A practical solution is to take a scheme of the cas-
code circuit, which effectively increases the drain
output impedance.

Provided that the parameters for the input FET
are gp,1 and r41, and those for the cascode tran-
sistors are g,,2 and 42, we obtain for the effective
drain output impedance

gm2Td1Td2 + ra1 + raz

goooboooboboobgobboobo 200
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which is discussed in §2 in detail.
The open-loop gain is eventually presented as

A= Im19m2Td17d2,

cooooocooooooooon
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gm1 =

gm2 =

Td1 =

Td2 =

where we assume: a weak inversion for the in-
put transistor; a strong inversion for the cascode
transistor; and a common behavior of the drain
output impedance. We in practice employ the
following equations:

!
nkT/q’
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L+ Lo*Vpsi
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Lo+ Lo * Vpga

Lol



00000000000000000000000
0000Vps: = Vpge = 0.8 VO Ly = 0.15% 10~
ooooooQ

7.2.3 Example with practical parameters
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where we set Vpg1 = Vpgo = 0.8V, Ly = 0.15 %
1075, and k, = 145 pA/V?2.

Fig. 4 shows the transconductance, ¢,,1, of
the input FET and the output impedance,
JmaTd1Td2, at the drain node of the cascode tran-
sistor. The size of the cascode transistor is set
as W/L = 4.5/2.4 in pm, and its drain current
is set as 10 pA. The horizontal axis shows the
drain current of the input FET, which covers up
to 2 mA.
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Figure 4: Transconductance and output impedance of the cascode circuit for Ijo = 10 pA.

ooobooobooobooboobooboooobo
oooo0o0oOo (Ip)0000O0OO0O0O0O0oOoOoOo
000000000000 00ooo0 (Ipn) 00O
gbooobOooooboooooooboooon
goooooooooobooooooboooooo
googooob12eo00000000000000O
oooood

The transconductance of the input transistor in-
creases in proportion to the drain current, while
the output impedance of the cascode circuit de-
creases in inverse proportion to the drain cur-
rent. Eventually, the gain of the cascode circuit
is kept constant as approximately 12000, irrele-
vant of the drain current of the input transistor.
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Figure 5: Output impedance and gain of the cascode circuit for I;; = 100 pA.
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In Fig. 5, the drain current I is swept from 0
to 20 pA, while the drain current of the input
transistor is kept constant as I;; = 100 pA. The
output impedance, g,norq1742, is about 6 M at
I42 =10 pA, and increases for the lower current
to go more than 10 M€). Hence, the entire gain
of the circuit goes beyond 20000 for the lower
current region of I;s.

In order to increase the output impedance, you
have an option to decrease the drain current, I,
of the cascode transistor as well as a trivial way
of increasing the transconductance g,,1 of gmo.

The discussion here employs a very primitive
model, which may more or less deviate from ac-
tual circuit behavior.

For a detailed analysis you can consult a SPICE
simulation with appropriate SPICE parame-
ters which match to the practical semiconduc-
tor fabrication process being employed. The
SPICE models with LEVEL=7 for PSpice, and
LEVEL=49 for HSPICE are recommended to ap-
ply for your circuit simulation.



7.3 Preamplifier circuit
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Fig. 6 shows a CMOS preamplifier circuit as an
example.

The preamplifier circuit consists of three pMOS
transistors(M1, M4 and M5) and two nMOS
transistors(M2 and M3).

M1 is the input transistor which determines the
transconductance, g,,, of the amplifier circuit.
The transconductance of the input transistor in-
teracts with the detector capacitance to con-
tribute as a major component of the electronic
noise.

It might appear that we should employ an nMOS
transistor of M1 for the purpose of obtaining a
larger g¢.,, and, hence, reducing the electronic
noise.

It is known that the 1/f noise of the pMOS tran-
sistor is smaller than that of the nMOS. In addi-
tion, it is convenient for designing the circuit if
the source node of the input transistor is tied to
the ground level together with the back-gate. We
then choose here to employ a pMOS transistor as
an input transistor under the assumption that an
n-well CMOS fabrication process is going to be
applied.

M5 acquires V H on the gate to generate a con-
stant current of 0.1 I,..¢; M2 acquires VL on the
gate to generate a constant current of 1.1 * .. ¢;
hence, the input transistor, M1, is driven by a
drain current of I ..y.

M3 is the cascode transistor, as discussed in
§7.2.2. The cascode circuit additionally takes a
role to reduce the effect of the Miller capacitance
as well as to increase the output impedance at
the node AOUT.

The cascode circuit described here is different
from that discussed in §7.2.2, since the tran-
sistor type of M3 is different from that of M1,
and, hence, the circuit configuration is sometimes
quote as "folded cascode”.

On the other hand, the cascode circuit, which
consists of M4 and M5, is exactly identical to
the circuit discussed in §7.2.2.

The output impedance of the cascode circuit con-
sisting of M4 and M5 is estimated to be much
larger than the output impedance of the cascode
circuit consisting of M1 and M3, and, hence, the
effective output impedance is considered to be
bounded by the output impedance of the folded
cascode circuit portion.
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Figure 6: Schematic of the CMOS preamplifier

7.4 Feed-back ratio versus open-loop gain.
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In §7.2.1, we have discussed that the higher open-
loop gain achieves a higher charge collection effi-
ciency.

The charge-collection efficiency could be im-
proved by employing a larger capacitance for C',
which, however, lowers the overall amplification
gain and is not interesting. An ideal way is to in-
crease the open-loop gain and at the same time
to decrease the capacitance Cy.

A side effect of the small C'; results in a reduction
of the feed-back ratio to deteriorate the rise time
at the output of the preamplifier. The side effect
of the large open-loop gain results in a circuit-
instability manifested by the minor pole.

In order to analyze the characteristics of the
feed-back circuit it is convenient to investigate
the behavior of the characteristic equation, 1 +

n(s)A(s) = 0,
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where p(s) and A(s) are the feed-back ratio and
the open-loop gain as a function of the frequency
variable, s = iw.

In more detail, u(s) can be written as

/JJ(J(l + SOL’I”())
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where pg = is the DC feed-back ratio,

¢y

C F+ Cp
C', is the capacitive load at the output node of
the preamplifier, C'p is the detector capacitance
where incorporated is the gate capacitance Cg,
and 7 is the effective DC load /impedance at the
output node.

On the other hand, A(s) can be written as

_ Aog(s)
1+ sroCr’

where ¢(s) represents the contribution from mi-
nor poles.
Then, the characteristic equation is rewritten as

1+ 5r9(CrL + oCp) + poAod(s) = 0.
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As long as the minor poles are negligible, we can
set ¢(s) = 1. The solution of the characteristic
equation gives

1+ poAo

ro(Cr + 1oCp)

The signal’s rise time, t,., for the impulse re-
sponse is in general defined as the inverse of the
solution of the characteristic equation. Taking
into account of the numerical relations pgAg >
1, we obtain

Cr

C
2+ .
Hogm

Im

The first conclusion derived is that the signal’s
rise time is deteriorated for a smaller value of the
DC feed-back ration, pg. Then, it is reasonable

to take pg as pg > —L
Cp

Assuming that the minor pole contribution can

1 i.e. the
— &, lL.C.
(L+s/sm)*

second and third poles are degenerated, the char-
acteristic equation is rewritten as

be represented as ¢(s) =

11
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As is usual for the Hurwitz criterion, we separate
the characteristic equation into two parts: the
odd ordered part and the even ordered part, as
follows:

27"0

1
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m m
2 1
{TO(OL—F,UQCD)+S—}S+T0(OL+;LQCD)STSB = 0.
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poAo < 2{ro(Cr + poCp)sm + p
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When the circuit is stable, the solutions for the
above equations are alternatively located on the
imaginary axis, which gives the following equality
as the stability condition:

1
(CL + 1oCp)sm

b+ 4.

Once you put actual numbers for each variable,
you find that the first term constitutes a major
contribution over the rest, and, hence, we can
simplify the above inequality as follows:

oAy < 27‘0(CL + ,LL()CD)Sm.

0000000000000000000
0000Cy =02pFO0 Ay =10"0ry =5 MQO
Cr =01pFO0Cp =10 pFO000O00O00s, >
6.62x10°' 0000000000000 0O0O0O
O700000000000000O00O0O000
0000000000000 00s, = 1.%1070
sm=6.62%10"000 s, =10.%x10" 00000
ooo
0000000000000000001.2 MHz
021 MHOOOO
0000(-1,0)000000000000000
0000000000000 ooooooooo
0000o00o0oooooo
00000000000 o0oooooooooo
0000000000000 ooooooooo
ooo

oooooooooooooc,ooooood
gbooooOoooobooboooooboooon
gbooooooooboobooooooooooo
OO0000D00C, =05pFO00000s, >
2811070 00000000000000000
gbooobOooooboooooboogosgbon
good

Putting such parameters as Cy = 0.2 pF, Ay =
10%, rg =5 MQ, Cr, = 0.1 pF and Cp = 10 pF,
we find that the circuit is stable for s,, > 6.62 x
107.

Fig. 7 shows the so-called Nyquist diagram,
where depicted are three curvatures correspond-
ing to s, = 1. %107, s, = 6.62 % 10”7 and
Sm = 10. % 107,

The start/stop frequencies are 1.2 MHz and
21 M H z, receptively.

As long as the curvature rotates around (0,0) see-
ing (-1,0) on its left-hand side, the circuit is sta-
ble. On the other hand, the curvature shows the
circuit instability when seeing (-1,0) on its right-
hand side.

Eventually, you find that the Hurwitz and the
Nyquist criteria reach an identical conclusion.

The second conclusion implied by the above dis-
cussion is that the stability region for s,, can
be expanded by artificially adding Cy, with some
sacrifice on the rise-time performance.

If we take C', = 0.5 pF, the stability region is
expanded down to s, = 2.81 % 107. The corre-
sponding Nyquist diagram is shown in Fig. 8.
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Figure 7: Nyquist diagram for the CMOS preamplifier with Cp, = 0.1 pF'
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Further insight concerning the above inequality
indicates that the above inequality stands irrele-
vant of the value for p aslong as Ag < 2r¢CpSp,
and that the stability is recovered by decreas-
ing the value for puoCp relative to Cp,, even for
Ag > 2r0Cpsm,.

The location of s, can be moved to the high-
frequency side by taking a larger value of M
for the cascode transistor, M3, in Fig. 6, since
the time constant associated with the internal
node, which corresponds to M1’s drain and M3’s
source, is reduced by increasing the transconduc-
tance of M3.

Finally we discuss a possible instability, which
might be raised when the amplifier is detached
from a detector.

Even if the stability is satisfied in a normal condi-
tion where the amplifier is loaded by the detector
capacitance, C'p, it may happen that the circuit
raises an instability when the circuit is examined
by itself.

Since the pp on the left-hand side of the inequal-
ity is easy to increase, while poCp is not so sen-
sitive as pg, the inequality might not stand any
more.

Then, the last conclusion is that it is important
to examine the circuit stability without any de-
tector capacitance as well as the stability with a
proper detector capacitance.
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Figure 8: Nyquist diagram for the CMOS preamplifier with Cp, = 0.5 pF.
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Subject for report (4)

Make a list for the functions of the preamplifier
and the shaping amplifier, and then to briefly
discuss each item of your list.

In addition to the above discussion, consider the
reason why it is not feasible to directly employ
versatile operational amplifiers as an amplifica-
tion element of the preamplifier for the radiation
measurement.
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