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Abstract

The basics of an integrated circuit are described with special emphasis placed on a charge-measurement
system. Starting with an outline of a fine CMOS technology, the discussion moves to a practical imple-

mentation of circuits.
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8.1 DC restoring scheme
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The charge integrated and stored in the feed-back
capacitor must be discharged by a certain mech-
anism, since a successive charge train arriving at
the preamplifier eventually saturates the output
of the preamplifier to interfere with the power
rail voltage.

The traditional way to discharge the integrated
charge is to employ a high-resistance resistor in
parallel with a feed-back capacitor; to employ a
MOSFET switch to short the capacitor; and to
employ a MOSFET in a fashion of the transfer
gate in place of the resistor.

The first method is absolutely inadequate for an
integrated circuit. The absolute value of the
high-resistivity poly-silicon intolerably deviates
from the target value as well as the fact that it
occupies a large silicon area compared with the
other device elements, and, hence, the quality of
the circuit as a whole is not necessarily guaran-
teed.
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The second scheme complies with an integrated
circuit, but the driving signal for the switch is
easy to effect the circuit performance due to as-
sociated digital action, causing some damping os-
cillation to prohibit any data acquisition for a
while.

The third scheme is superior to the above-
mentioned two schemes for resolving the size and
settling-time issues. A possible issue is the neces-
sity for a sensitive adjustment of the gate-voltage
to attain a high resistance. The voltage to meet
with the target value of the resistance may de-
viate from one channel to another, which may
cause trouble for a multi-channel integrated cir-
cuit.

There exist common issues related to the above-
mentioned three schemes; since the voltages for
the input and the output of the preamplifier are
different in general, an additional level shifter
circuit is required, and the current which flows
across the feed-back resistor is eventually sup-
plied from the preamplifier.

The former issue is related to the dynamic range
available for the output; and the latter issue is
related to possible modulation of the operation
point of the preamplifier circuit.

The description below introduces an alternative
approach to overcome the above-mentioned diffi-
culties associated with the traditional scheme.

A leakage-current compensation circuit is dis-
cussed together with the high-resistance circuit.

8.2 Schematic of the resistance circuit
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Fig.1 shows a CMOS resistance circuit which
consists of four nMOS transistors (M1, M2, M7
and M8) and four pMOS transistors (M3, M4,
M5 and M6).

The nMOS transistor acquires a DC voltage on
its gate terminal VL to deliver a constant drain
current.

The nMOS transistor M2 is a cascode transistor
accompanying M1.

Driven by the current coming from M1, M3 takes
the configuration of a pMOS diode to generate an
internal bias voltage

M4 takes the configuration of a current mirror
together with M3. M4 and M3 have identical
W/L, but are set as 2:1 in terms of M.
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Figure 1: Resistance circuit.
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M5 and M6 acquire external voltages via termi-
nals VIN2 and VIN1, respectively, to steer the
bias current from M4 to the drain terminals of
M5 and M6.

The drain current of M5 is directly exhausted to
the power rail Vi, while the drain current of M6
is lead to the output terminal IOUT.

M8, as in a similar fashion as M3, generates a
constant current by receiving a bias voltage on
its gate terminal connected to VL.

MY is a cascode transistor accompanied by MS.

The output current on the terminal IOUT is the
difference between the drain current for M6 and
M8, which is written as

9Im59m6
9Ims + 9Ime ’

where ¢,,5 and g,,6 are the transconductances
for M5 and M6, receptively. Assuming a weak
inversion for M5 and M6 with a slope factor of
1.85, we obtain effective resistances of 925 M)
and 92.5 MQ for bias currents of 100 pA and
1 nA, respectively.
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Figure 2: Frequency dependence of the resistance circuit for the I,y = 100 pA range.

020030000 400PSpice0000000
0000000000000000000000
0000VOD0000000 Q0000000
00000000L0M0M600000000
00100 pAO1 nA0DO 100nA0D0D00O0
0000000000000 0L.;050pA000
1GQOO000000L.;0 200 nA0 00600 kS
000000000000000000
0000000000000000000000
00000000000000000000000
0000000000000000000000
0000000 R;00000000000 RsCy
00000000000
00000000000000000000000
100 kH>-00ODO0OO0D0O00000000000
0000000000000 ~10MQOOO0
000000000000

O00OPSpice0 000000000 ONR=1.850
gboooboooooboobooooboooon
gbooobooooobobooobooooboo
gbooooooooboboooobooooobon
obooooOoooobOobooooobooooon
gboooboobooooobooooooboo

Fig.2, Fig.3 and Fig.4 show the effective resis-
tance of the resistance circuit in the settings
around I.y = 100 pA, I,y = 1 nA and I,y =
100 nA, receptively. The resistance reaches 1 G2
for I,.y = 50 pA, while it goes down to 600 k€
for I.y = 200 nA. The vertical scale should be
read as {2, while it is denoted as V.

For larger resistance settings, the frequency
band-width is gradually squeezed. This tendency
does not raise any problem as long as a resis-
tance circuit is employed for a feedback resistor of
the preamplifier circuit, because the decay time
constant, R;Cy, of the preamplifier is simultane-
ously enlarged for a larger Ry.

When you employ a resistance circuit for a
feed-back resistor of the shaping amplifier, it
is preferred to set the resistance circuit to be
smaller than 10 M2, because the shaping ampli-
fier requires a frequency bandwidth wider than
100 kHz.

You should be aware that the PSpice results are
far from the estimation under the assumption of
a weak inversion with n = 1.85, which mani-
fests difficulty of circuit simulations in the sub-
threshold region, and, hence, we need to design
circuits with a sufficient tuning range.
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Figure 3: Frequency dependence of the resistance circuit for the I,.; = 1 nA range.

8.3 Limitation of the resistance circuit
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The resistance circuit is very convenient since
the value for the resistance is tuned for a wide
range by merely adjusting the bias current for
the MOSFET"s.

There, however, exist some drawbacks. For a
large voltage difference between terminals VIN1
and VIN2, the linearity as a resistance device is
lost.

Fig. 5 shows an I-V characteristics of the re-
sistance circuit in the resistance range around
100 M. No matter what the bias current is,
the resistance circuit begins to manifest a non-
linearity at around 50 mV for the terminal volt-
age, and eventually begins to quickly raise its
resistance at around 100 mV.

The non-linearity of the resistance for a large sig-
nal is inadequate to directly apply for an am-
plifier with a large voltage swing, i.e. 100-500
mV. As long as you are applying the circuit for
a feedback resistor of the preamplifier, the non-
linearity is not yet fatal; the time constant for
the charge decay just becomes longer for a larger
input.
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Figure 4: Frequency dependence of the resistance circuit for the I,..y = 100 nA range.
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Fig. 6 compares the pulse shape at the output of
the preamplifier between the feedback networks
with an ideal resistor and the resistance circuit.
We can confirm that the resistance circuit re-
sponds with a longer decay time constant for an
output pulse of 100 mV, while for 20 mV the
differences between the two is hardly observed.

Another bound for the resistance circuit comes
from the deteriorated noise performance com-
pared to the ideal resistor, because the resistance
circuit associates additional thermal noises from
bias circuits.

The entire thermal noise of the resistance circuit

amounts to , which includes contributions

from M4 and Mg in Fig.1, while the thermal noise
coming from M5 and M6 is compatible with that
of the ideal resistor. The thermal noise generated
at bias circuits other than M4 and M8 could ad-
ditionally be superposed to the above-mentioned
thermal noise.
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Figure 5: I-V characteristics of the resistance circuit.

8.4 Compensation of the leakage current
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We understand that the feed-back resistance, Ry,
of the charge-sensitive preamplifier discharges
the stored charge to recover its baseline as time
passes.

An actual radiation detector associates with a
certain amount of leakage current in addition to
the signal coming from ionization in the detector
medium.

Presenting the leakage current as Z—L, a charge-
S
sensitive preamplifier responds as follows:
Ryig,
s(1+ SCfRf) '

Applying the final-value theorem to the above
transfer function, we obtain

lim V(¢) = lim sV (s) = —Ryip,

t—oo

ODo0000000000000000000 Ry
boo0oooooooooooo0ono Ry,000
gbooooooobobooobooboooboboo
oboooooooobooboooooboooon
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s—0

which indicates that entire part of the leakage
current flows into resistor Ry to easily saturate
the output of the preamplifier, since it is often
the case that the Ry is chosen so as to have a
high resistance.



-0nV—= = I E—— — 2
¢ - |
- >
./Z \\
i ) Far sral | |signal
-40nV /é
?7/ Rf-=67--iF5--Mehn
- 80mv // Ter=I HA
q
-120nV
Os 20us 40us 60us 80us 100us
v a V(out) o + V(out?2)
Ti e
Figure 6: Response for a large signal.
Assuming Ry = 100 MQ and iy = 1 nA, we

O0O00R;=100MQOO00O00¢, =1nA0
gboooooooobogobooooooooooon
gbo1momVoooog
oboooooooobooboooooboooon
gbooobooooobobooooboooon
uboooboooog
gboooooooobobooobooobooooon
obooobooooobooboooooooon

gbooooooooboboooooobooooon
gbooooooooboboooooooobon
gboooooooobooboooooboooon
gbooobooboooooobooobooobaon

gboooooooobooboooooobooooon
obOoboooobooooobobobooboooobo
gboooboooooboobooooboooon
gbooobooooobooooooboooon
ooooogoooen

‘0000000000000 00000000Oo0n 5.6
gooooooooooog

obtain an offset voltage of 100 mV at the output
of the preamplifier.

Since an integrated circuit hardly complies with
the DC decoupling technique with a large capac-
itance, even a small offset at an earlier stage of
amplification may become fatal for a later high-
gain stage.

The resistance circuit is deteriorated in linearity
by the offset voltage at the output of the pream-
plifier.

A scheme of the leakage-current compensation
can be attained if the feed-back resistance has
a null resistance at the low-frequency end, which
keeps the output DC level, as it is without any
leakage current.

We need to find a scheme to reduce the gain
for the low-frequency end. Control theory tells
that the steady-state error can be reduced by in-
troducing an integration element as a feedback
transfer function.
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We are going to try to employ an integrator,
_gm2_ 5 : :
SCLR; in parallel with the feedback resistor,

Ry, where Ule is the gain of the integrator,
P

and g,,2 is the coefficient to convert the voltage
at the output of the integrator into current to
feed into the input node of the preamplifier.
The combined transfer function of the preampli-
fier can be obtained with the usual technique as
follows:

1
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As for the high-frequency limit, the third term
in the denominator can be neglected, and, hence,
— Y As
1+ SCfRf ’
for the low-frequency limit, because the first and
second terms in the denominator can be ne-
sCpRy
gm?2 ’
If we apply I(s) = ir/s to the above transfer
function, we obtain lir% sV (s) = 0, which indi-
S5—

the transfer function tends to —
glected, the transfer function tends to —

cates that the output of the preamplifier tends
to zero, no matter what is the leakage current.

The condition for refraining from damping oscil-
lation can be obtained as

> C{fRf.

As long as the above condition is kept, the poles
for the transfer function do not include a complex
number, and, hence, there occurs no damping
oscillation.

Assuming that Cy = 0.2 pF, C, = 4 pF and

2
putting — = Ry, we obtain 2.5 > gm2. Tak-
Im1 ’

m Im1
ing the weak inversion approximation for the

transconductance devices, the compensation cir-
cuit can stand for a leakage current of up to 2.5-
times the bias current for the resistance circuit.
In order to comply with the larger current, we
need to incorporate a larger capacitance for Cp.

Fig. 7 is an example of a resistance circuit with
a built-in leakage-current compensation circuit,
which is the same as the resistance circuit shown
in Fig. 1 except for elements M9, M8 and C,.
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In Fig. 7 the drain current of M5 is absorbed
by a constant current source configured by M9,
while in Fig. 1 the drain current of M5 is directly
exhausted into V.

Once a voltage imbalance occurs between VIN1
and VIN2, the excess/lack of the drain current is
integrated into C), to be converted as a voltage,
and is successively converted into current by MS.
In an equilibrium the drain current of M8 absorbs
the drain current of M6 with a cascode transistor

M6 in between.
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Figure 7: Schematic of the resistance circuit with leakage current compensation.
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Fig. 8 shows the output impedance of the re-
sistance circuit for I,y = 1 nA with a built-
in leakage current compensation circuit, which is
evaluated with PSpice.

The horizontal scale represents the frequency,
which covers from 1 Hz to 100 M Hz. The ver-
tical scale should be in M2 instead of MV

10
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Figure 8: Frequency characteristics of a resistance circuit with leakage current compensation for I,.y = 1 nA.
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The output impedance approaches 67.5 M) with
a broad plateau around the center of the coordi-
nate. The low output impedance at the lower-
frequency region can be understood as presenting
a function of the leakage-current compensation.

For a larger value of Cj,, the wider plateau is ob-
tained for the output impedance, which extends
to the lower frequency region.

8.5 Noise associated with the leakage-current compensation circuit
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We understand that the base-line shift coming
from the leakage current can be eliminated to
some extent by employing a leakage-current com-
pensation circuit.

If the leakage-current compensation circuit dete-
riorates the signal-to-noise ratio, the availability
of the circuit is diminished to a great extent.

We thus examine here the impact of the leak-
age current compensation circuit in terms of the
signal-to-noise ratio.

The input equivalent noise power without any
leakage current compensation circuit can be writ-
ten as

11
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where ¢ is the electronic charge, k is the Boltz-
mann constant, 7" is the absolute temperature in
Kelvin, G is the transconductance of the input
FET, and C7 is the capacitance, which consists
of the detector capacitance (Cp), the gate capac-

2
itance of the input FET %, and the feedback

capacitance (Cy). The second term is for an ideal

for a re-

resistor, which is substituted by

f
sistance circuit.

The input equivalent noise power which is spe-
cific to the leakage current compensation circuit
is written as

12kT gmgyg%8kTC%w2
Rf pr 3GM ’

The first and the fifth terms are the same as the
corresponding terms which appear for the input
equivalent noise power with an ideal resistor.
The second term represents the thermal noise
coming from MS8.

The third term is modified by the contribution

of the thermal noise coming from M4, while it is

4T
—— for a circuit with an ideal resistor.

The third term represents the thermal noise com-
ing from MS.

The fourth term takes into account the contri-
bution from M4 and M9 as well as that from M5

and M6. The factor 222 can be understood that
wCyp

12T
the thermal noise, R, is integrated by Cp, and

then converted to current by a transconductance,
Im2

The noise power spectrum at the output of the
preamplifier can be written as

SkT

Ry

Rf pr

8kTCZw?

2
AR T

}.

In the low-frequency end, the power spectrum for
the output of the preamplifier is 12kT' R, which
is equal to that of the resistance circuit without
the leakage-current compensation capability.

As for the high-frequency end, the power spec-

CF

3Gy C}% ’
without the leakage-current compensation circuit
and with the ideal resistor.

trum is which again meets with that

12
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A distinct difference between the resistance cir-
cuit with and without the leakage-current com-
pensation circuits appears at the frequency range
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which penetrates into the pass-band of the shap-
ing amplifier to deteriorate the signal-to-noise ra-
tio.
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Figure 9: Noise spectrum for Ry = 67.5 M.
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Fig. 9 and Fig. 10 show the output noise spectra
for the CR-RC filter with Ty = 1 us, which is
attached downstream of the preamplifier. An ex-
act pole/zero cancellation is not employed here
for the purpose of simplicity.

Fig. 9 and Fig. 10 correspond to the cases
of the feedback resistance Ry = 67.5 M(2 and
Ry 300 MQ, for the preamplifier, respec-
tively. Each figure shows three curves which cor-
respond to a preamplifier with a resistance circuit
(with/without the leakage-current compensation
capability) and an ideal resistor.
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Figure 10: Noise spectrum for Ry = 300 M.
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The most noisy curve is for the resistance cir-
cuit with the leakage-current compensation ca-
pability, which is followed by that for the resis-
tance circuit without the leakage-current com-
pensation. The ideal resistor exhibits the least
noise.

The horizontal axis represents the frequency with
the logarithmic scale. The vertical axis repre-
sents electron?/Hz, and, hence, the integration
over the frequency provides the square of the
equivalent noise electrons.

Each figure consists of four plots. Each plot in
Fig. 9 corresponds to ¢y, = 0, 200, 400 and 600
pA. Fig. 10 presents plots for iy, = 0, 40, 80 and
120 pA.
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The assumed parameters for the above figures
are Cp =4 pF, Cy =02 pF, Gy = 2 mS and

Cr = 10 pF. The transconductance (gmz2) is
2 1 ;

assumed to be g0 = —L—HL, where .5 is
Ry Iy

the bias current for the resistance circuit: I,oy =
1 nA for Ry = 67.5 MQ, and I,.; = 200 pA for
Ry = 300 MAQ.

Since the vertical axis is presented in
electron?/Hz and the horizontal axis is
presented in the logarithmic scale, the differ-
ences between the three cases are more or less
exaggerated. Once we integrate the spectra over
the frequency, we find that the largest and least
noises are 159¢ and 248e for Fig. 9; 142e and
170e for Fig. 10.

We then recognize that it is possible to target the
noise level around 150e by the resistance circuit
with/without the leakage-current compensation
capability. It is advisable to try a shorter peak-
ing time, since the increase in noise is due to a
leakage current, or equivalents.
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