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Abstract

The basics of an integrated circuit are described with special emphasis placed on a charge-measurement
system. Starting with an outline of a fine CMOS technology, the discussion moves to a practical imple-
mentation of circuits.
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9 Signal processing with a discrete time domain

9.1 Discrete time signal processing

0000000000000 000000000  The discrete-time signal processing deals with

00000000000D00000000000 signals on a discrete time domain.

0000000000000 000000000 it is irrelevant with amplitude digitization, it is
O00000000000000o0ooOggoon0  easy to conform with the constant-rate wave-
A/DODDDODOODODOOODOOOOOOO  form sampling system with an A/D converter.

We first discuss the so-called double-correlated
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signal processing follows.

sampling, where we find some characteristics as-
sociated with discrete-time signal processing. An
introduction to a general approach with discrete



9.2 Double-correlated sampling
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Double-correlated sampling employs two data
points separated by a predetermined time inter-
val. The amplitude difference between the two
provides a net amplitude for the input signal.

When a wave form f(¢) is sampled with a time
interval T, the double correlated sampling yields

oo

eiu}to (1 _

e ) f(w)df,

where f(w) is the Fourier transform of f(t), and,
hence, the factor introduced by the double corre-
lated sampling is 1 — e~ ™75 except for the phase
factor, ™% in terms of the Fourier transform.
Assuming that f(t) represents an integration of
the charge generated in a detector medium, the
Fourier transform, f(w), will be f(w) = @,

iw
and, hence, the time domain presentation for
(1 — e~ ™Ts) f(w) is written as follows:

Qo— 0 fort<oO
Qo forO<t<Ty
0 fort>Ts,.

In this way, we obtain an effective impulse re-
sponse for the double correlated sampling sys-
tem.

Once we try to figure out the equivalent noise
charge, we soon encounter an obstacle, i.e. non-
convergence of the integral

|H(w)|*w?df.

In order to provide a remedy for the integration,
the transfer function should be accompanied by a
suppression factor for the high-frequency region.

We examine here the incomplete/complete inte-
gration filter as a high-frequency suppression fac-
tor.

The incomplete integrator can be presented as
T Ty while the complete integration filter
—iwT

with a subsidiary
iw
condition, Ty < Tk.



9.2.1 Noise reduction with an incomplete i
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Employing the incomplete integrator, the peak
of the impulse response appears at t = T, and,
hence, the normalization factor (V) of the trans-
fer function (H(w)) is evaluated as

Ty
Qo(1 —e=7/Tar)’

Then, the integrals required to evaluate the
equivalent noise charge are

e“Tdf =1 — N =

1 [eS) 1 [e e} |1_67inS 2 1
z H(W)2df = d
2[m‘ (w)| f 2(1_€7TS/TM)2 [oo w2 |1+inM|2 f
_ _ o~ Ts/Tm
= T—Tu(—e ), and
2(1 — e~ Ts/Thr )2
L[ 2 1 - itz 1
= H d — - 1 — wWwis d
2/700‘*1 |H (w)|*df 2(1 — e T:/Tn)2 /ﬂJ ¢ | |1+ iwTh|? 4
1

Tar(1 — e~ Te/Thr)"

gbooobooboboooboooooooooooo
obooooOoooobooboooooboooon
gboooboooooboobooooboooon
O00000000000000 1-%/TM g
000000000T,/Ty — 000000000
oboooooooooo

The first integral provides a weight for the par-
allel noise, such as shot-noise and etc., while the
second integral provides a weight for the series
noise. A common factor, 1 — eT=/TM ocated at
the denominator of the above integrals, makes
the integrals tend to infinity when Ty /Ty — 0.

9.2.2 Noise reduction with a complete integrator
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Taking into account that the peak amplitude
of the double-correlated sampling system with
the complete integrator appears at t = Ty, for
the impulse response, we can obtain the nor-
malization constant (V) for the transfer function
(H(w)) as follows:
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Employing the normalization constant (N), we
obtain the integrals to evaluate the equivalent
noise charge as follows:
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The integrals with the complete integrator are
free from the divergent factor, 1 —e~7+/T™ in
their denominators.

In the limit of Th; — 0, the integrals with the
incomplete/complete integrators tend to coincide
with each other, as is intuitively implied.

As in the case of a CCD readout with a small
detector capacitance as well as negligible leak-
age current, double-correlated sampling with the
complete integrator has a good chance to provide
an extremely low noise characteristics of less than
10 electrons.

Assuming Cp = 0.1 pF, g, = 0.1mS, and Ty =
4 ps, we obtain an equivalent noise charge of 3.23
electrons even at room temperature as long as
we are concerned with the series noise associated
with the MOSFET attached to the floating gate.

9.3 General approach for discrete signal processing
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As for a signal-processing system whose impulse
response is f(t), we sample its amplitude with
a certain time interval Ty, i.e. at {t = nTgln =
0,1,2,3.....}, and hold them during the time 7 <
Ts. The Laplace transform of the sampled series
is written as
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where fr = f(kT), and I(s) is the Laplace trans-
form of the input series of charge impulse. You

—TSs

should be aware that represents a rect-

angle with a width of 7, i?e. hold. On the other
hand, assuming that the observed series of the
output waveform is presented as {4,}, we ob-
tain its Laplace transform as follows:
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which can be equated with Q(s) to yield
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If we can rewrite the denominator of the above
equation as
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we eventually reconstruct the input series of the
charge impulse in terms of the output series,
which can be organized as follows:
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Once we substitute e’** with a variable z, we

(o)
obtained F(z) = kaz_k, which is called the
k=0

z-transformation of f(t). The z-transformation
is a basic technique to deal with signal process-
ing in a discrete time domain, and is frequently
employed for an analysis of SC-circuits, such as
A3X-modulators and so forth.

9.4 Reconstruction of the input-signal series

9.4.1 Signal reconstruction with RC filter
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We now show a practical technique to reconstruct
the input series.

Assuming that we have equipped a low-pass fil-
ter with its time constant of Th; at the output
of a charge-sensitive preamplifier, we obtain the
impulse response, f(t) = 1 —e~*T™ in time do-
main, and, hence, its z-transformation is
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where z is defined as x = T,/Ty. Taking an
inverse of F(z), we obtain
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and, hence, the input series {I,,} can be recon-
structed as



I, =Apt19-1 +Ango + An_191.

oboooooooobooboooobooobooon
gbooobOooooboboooboooooboon
gboooboooooboboooboooobooboo
ooooogd

g0 =

g1 =

oooo
0009149+ =00000000{4,}0
0000000000000000000000
0000000000000 000000000
0000000000000000000000
00000000000
0000000000000000000000
0000000000000 000000000
0000000000000000000000
oooooo

You should be aware that the input series can be
reconstructed with three consecutive data points
of the output series. The coefficients g_1, gg, and
g1 are

1
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Because of the special property g_1 + go + g1 =
0, a finite offset for the output series or a very
low-frequency external noise interfering with the
output can be suppressed to negligibly affect the
reconstruction of the input series.

The effect of the decay time constant of the
preamplifier can be corrected under a condition
that the decay time constant is large enough com-
pared to the sampling interval.

9.4.2 Signal reconstruction with a CR-RC filter
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Employing a CR-RC filter at the output of a
preamplifier with an identical time constant for
differentiation and integration, we obtain an im-
pulse response of f(t) = (t/Tar)et™ "™ and,
hence, its z-transformation is written as F(z) =

rel=r,-1 . .
m. Taking an inverse of F'(z) as
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where we find the coefficients to be employed for
the reconstruction of the input series as follows:

The sum of the coefficients is not zero for a sys-
tem with a CR-RC filter, which is quite different
from the case of a RC filter.



9.5 Evaluation of the input equivalent noise charge

9.5.1 Contribution of the parallel noise
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Since parallel noise is located in parallel with the
true signal source, the input noise series {I,,,, } for
the parallel noise can be presented in a similar
way as the true signal.

As long as you are considering a the system with
the RC filter, or the CR-RC filter, the input series
is reconstructed as

In = An+lg—1 + Ango + An—lgl-
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Employing the above relation, we evaluate <
Ign >. In practice, it is written as
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where we assume a steady state condition, and,
hence, the n-dependence disappears. The new
symbols (A,, Cp1, and Cpy) are defined as <
Ap >=< A2 >=< AR, >=< A2 ) >,
Cpl =< Ap(n+1)Apn >=< ApnAp(nfl) >,
and Cpa =< A1) Apn—1) >. Assisted by
continuos-time noise theory, we obtain for <
A2 >

A
5/0 F2(t)dt.

You should be aware that < I? > remains at a
finite value while < Af, >, < Cpy >, and < 052 >
tend to infinity. According to Table 1, you find
that the constraint g_1 + go + g1 = 0 works to
maintain < I2 > to be finite. The evaluations
for Cpi become straightforward by employing a
frequency-domain presentation; the integration
over frequency is executed as follows:
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where F! is the Laplace transform of f(t). We
can execute similar evaluations for the CR-RC
filter case.

Table 1: Correlation coefficients for parallel noise.

RC filter

CR-RC filter

Impulse response
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Table 1: Correlation coefficients for parallel noise.
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Eventually, the RC filter provides
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9.5.2 Contribution of the series noise
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Both of these tend to zero in the limit z — 0. On
the other hand, they tend to diverge in the limit
x — 00. The divergence for the CR-RC filter is
more steeper than that of the RC filter.

In addition to the parallel noise, there exists an-
other noise component, called the series noise,
which behaves something like a derivative of the
parallel noise. Series noise can be introduced by
differentiating a noise source I, which behaves
similar to the parallel noise.

Since the signal-processing chain responds as
f/(t) for an impulse of the series noise, we need
to examine the z-transformation corresponding
to the series {f'(nTs)}. Denoting the Laplace
transform of f(t) as F'(s), the z-transformation
for {f'(nTs)} can be presented as

o+1i00

sF(s)
1—2z"1esTs ds.
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An alternative way to
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As for the RC filter, its

s

Laplace transform is F'(s) = — 2% where
s(s+ so)

so = 1/Ty, and, hence, the z-transformation

Fd(2) is represented as
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In a similar fashion, employing the Laplace trans-
form, Fl(s) = —% _ for the CR-RC filter,
(s+s0)?

we obtain the corresponding z-transformation as
follows:
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Eventually, there stands the relation
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between the input signal series {I,} for the se-
ries noise and the output signal series {As,} for
the signal processing chain. In order to extract
a signal at time nT', we apply F¢(z)~! for each
side of the equation, which yields

1= Astn+1)9-1 + Asngo + As(n—1)91-

Taking a quadratic mean for each side, we obtain

(921495 +97) < A2 > +2(g9_1 + 91)90Cs1 + 29-191Cs2,

where we have employed < IsnIsny1y >= 0, <
A2 >=< A2 ) >=< AL, >=< A2, ) >,
Cl =< A n+1)A n >=< ApnAp(nfl) > and
Cyo =< Ap(n+1 Apn-1) > < A? > is evaluated
as follows:
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as has been practiced for a continuous time noise
evaluation. wvg represents a voltage noise source
located in series to the signal source. Cy rep-
resents a source capacitance located in parallel
with the signal source. Cs; can be evaluated by
executing the integral
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Table 2 is a summary of the coefficients so far
discussed, which are worth confirming as a part
of the drill.

Table 2: Correlation coefficients for the series noise.
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< I?2 > (u3 + u%,) can be interpreted as
the observed noise at the output of the signal-
processing chain. The right-hand side of the
above equation can be evaluated as

1, 1—e 2
CQ
9Th T (A — )2

for the RC filter, and

1

o2 e* +dx — e~

2
Vs

for the CR-RC filter. As a function of x, the
noise power for the series noise with the RC filter
exhibits a monotonous decrease, while with the
CR-RC filter it shows a minimum at around x ~
1.

It is remarkable to find that just an integrator,
such as the RC filter, exhibits a superior per-
formance than the CR-RC filter, which is quite
apparent for x > 1.5. The RC filter, which is
considered to be useless in continuous-time sig-
nal processing, resurfaces here as a usable scheme
in discrete-time signal processing.
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Figure 1: x-dependence for the parallel and series noises.

()0 RCODOOOO0O(b)O CR-RCOOOOO
0000000000000000000000
000027, 0000000000000000
000000000003C2/T, 000000
0oooooo

(a) shows an x-dependence as for the RC filter,
while (b) shows the case for the CR-RC filter.
The parallel noise is normalized by if,TM. The
series noise is normalized by v2C?/Ty.

9.6 Reconstruction of the asynchronous input signal series
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The discussion in the previous section was con-
strained by the fact that charge injection for the
input and the sampling at the output were ex-
ecuted at the common series of discrete time
points.

The actual signals for a radiation detector are
generally induced asynchronous to the sampling
timing, and, hence, we need to reconfigure the
scheme of the amplitude reconstruction as well as
the extraction of the event timing so as to comply
with a random arrival of the input charge.

The discussion in the following is restricted for
the case of the RC-filter to explain a scheme for
the amplitude/timing extraction and their reso-
lutions.

11
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Once we assume that the input charge is gener-
ated in such a way as Qod(t — (n + n)Ts) with a
positive 1 smaller than 1, the output series can
be presented as

Ap1 =

A, =
Anpr = Qo(l —exp{—(1—n)z}),
Anyz = Qo(l —exp{—(2—n)z}),

gboooboobooooboooooboo

In = QO

and, hence, we can reconstruct the input series
as follows:

1 — eap{—(1 — n)z}

)

1—e*

—eap(—2) + exp{—(1 =)z}

I7L+1 = QO

obobOooboobooooboooooboooooo

Qo =

’(] =

gobOooooboooooooooooobooooon
gboooboobooooooobooooooon
gooooooooboboooobooobooboo
gbooooooooboobooooobooooon
ooooooooon oL, 00000000
gbooobOoboooooobooooboooboan

1
14 =
—|—xln{

l—e*®

Solving above equations simultaneously, we ob-
tain the Qg and 7 as follows:

In + Ivz+17

Inexp(—z) + L1 }
In + In+1 '

You should be aware that the input signal is re-
constructed so as to be separated into adjacent
time points; the sum over these time points pro-
vides the input charge, Qq.

The timing for the charge impulse can be ob-
tained with a direct calculation employing I,, and
Inyq.

9.7 Resolution of the reconstructed signal series

9.7.1 Amplitude resolution

oooooooooooDoDD QUuud T, O
gbooobOooooboooooooboooon
gbooobooooobooboooooboooon
OO0000DooO00opDooD Quooooooo
gbooooooobood I, 0b0ooboooboon
oon

ooooooo

A question raised concerning the above-
mentioned scheme is how precisely the amplitude
Qo or the timing n7Ts can be determined. The
availability of the above-mentioned scheme will
be considerably diminished unless we can achieve
a reasonable resolution for the amplitude and/or
timing measurement.

The resolution for the amplitude measurement
is discussed first, followed by a discussion of the
timing measurement.

The variance of the amplitude Qg can be written
as

<AQY >=< AL} > +2 < AL AL, 1 >+ < AL, >,

12



000000000000000000000
00000000 ADDODODOOOOOOOO
D0< I} >=< Ity >= (62 + g5 + g7)(<
A?D >4+ < A2 >) +2(9-1 + 91)90(Cp1 + Cs1) +
29-191(Cp2 + C) 0000000000000
0000< Iyl >00001, = g_1Aps1 +
goAn +14,_, 00000000000

< InIn+1 > =

00000000g 1490 +¢=0000000
ooo

<Ilhy1 > = {<A >+ <A2>+Cop + Oy —

where the symbol A is omitted for the sake of
simplicity. Since we already know < I2 >=<
Lpr >= (21 + g5 +91)(< A7 > + < A >
)+2(9-1+91)90(Cp1+Cs1) +29-191(Cp2 + Ci2),
what we need to evaluate hereis < I}, I,,41 >. Re-
membering the relation I, = g_1A,11 + goAn +
g1A,_1, we obtain

(< A2 >+ < A? >)(9-190 + gog1)
+ (Cip+Crs)(g—191 + 91 + 95 + 57
(Cap 4 C24)(9-190 + 9190)
(Csp + C35)919-1.

Applying further the relation g_1 + gg + g1 = 0,
we finally obtain

2(C1p + C14)}(g-190 + gog1)

+ {(Csp+ Cs5) — (Cip + Cis) }g-101,

gbooobooooobooboooobooboon
gooood <A§>DDDDDDDDDDDD
ugbboobbooobboobygpoobboabo
obooooobooooon

9.7.2 Timing resolution

gbobonpbhO0O0000000

where the divergent quantity < Ag > is success-
fully cancelled out; also there is no 1 dependence.

The next discussion is concerned with the mea-
surement resolution for 7. Upon differentiating
the presentation in §9.6 for 1, we obtain

An =

goooboooboobgoobobobooboob
o000 A0O0O0OO0O0OOO

1

z2Q3

< An? >=

{((em™ -

Oooooood@eboboooooboboopboooo
gbobooboabooboabboooaboa

9.7.3 Examples

ubodobooooobobboboabaan
oo
goooog

1?4 (77D — 1)) < 17 > 42(e77 -

(e= — )AL, + (e~ (=% — )AL,

Qo

and, hence, the variance of  can be written as

1) (e~ =Dz _

which gives a smaller variance for the larger am-
plitude Qg to comply with an intuitive under-
standing.

We new numerically examine the above-

described variances.
In order to evaluate the parallel noise,

4ET  4KT

in=2qiL + —— + ——

Rp ' Ry’
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O000dooooo iy, =1pA0000000OO
O000000o000000000Rg = Ry =
50 MQOO0O0O

oooobooooo

Us

Oooooooooooooooon g, =2msS
O0000000T=300KOCs =4pF0Ty =
300 nsO Ty = 300 nsd Qo = 20000e OO O OO
goooboooboobobbobooboob
goboobooboobobbooooo

@
1355 \

we assume here i, = 1 pA for the leakage current,
and Rp = Ry = 50 M) for the bias resistor and
the feed-back resistor of a preamplifier.

In order to evaluate the series noise,

o 24kT

3 gm’

we assume g, = 2 mS for the transconductance
of the input FET for the preamplifier, ' = 300 K
for the temperature, Cs; = 4 pF for the detector
capacitance together with the gate capacitance
of the input FET, T, = 300 ns for the time
constant of the low-pass filter, Ty = 300 ns for
the sampling interval, and Q¢ = 20000e for the
input charge, unless otherwise specified. These
parameters are consistent with a fine-segmented
pixel detector.

x10° (b)
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Figure 2: Equivalent noise electrons and time resolution for the asynchronous events.

(1)00QeI 00000000000 OoOOOn
O0Mb)UO0p00000000000O00000OO
O0»0D0D0D0O00000OTy = 300,600,1200 ns
ooooboooooooooboooog

(a) depicts the resolution of Qg in electrons. (b)
depicts the resolution for 7. The horizontal axis
presents 7 ranging from 0 to 1. The three curves
for each plot are for Ty, = 300, 600, 1200 ns.
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According to Fig. 2(a), we find that the ampli-
tude Qg can be determined with resolutions 132e,
132.7e, and 135.3e for Ty = 1200 ns, 600 ns, and
300 ns irrelevant of 7.

On the other hand, according to Fig. 2 (b), the
resolution of 17 has a n-dependence and in general
improves for larger values of 1, and deteriorates
for smaller values of 7. We eventually find a tim-
ing resolution of 1.2 ~ 3 ns for the parameters
assumed here.
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